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Probability of Excessive Hydraulic Flow through Soil Liners

Gordon A. Fenton, M.ASCE"; Rukhsana Liza? Craig B. Lake®; and D. V. Griffiths, F.ASCE*

Abstract: Liner systems are increasingly being used to protect the environment from contaminated waste. At the same time, society is increas-
ingly insisting on estimates of the probability that these liner systems will fail to achieve their design objectives, one of which is to limit hy-
draulic flow from the contaminated region to acceptably small levels, This paper presents a methodology to estimate the probability of excessive
hydraulic flow, considering the spatial variability of the soil composing the liner (its mean, variance, and correlation length) as well as the liner
thickness. Semiempirical equations predicting the mean and variance of the effective hydraulic conductivity of the liner, based on theory and
calibrated by random finite-element method simulations, are presented and used to investigate the probability that a liner exceeds regulatory
hydraulic flow requirements. The proposed methodology is illustrated by an example. DOI: 10.1061/(ASCE)GT.1943-5606.0000817, © 2013
American Society of Civil Engineers.
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Introduction

Waste containment facilities rely on liner systems placed between
the waste facility and the underlying aquifer to minimize contami-
nant migration and thereby to limit the contamination of the sur-
rounding soil and groundwater. These liner systems may be either
naturally occurring or constructed and may be comprised of various
materials of various areal extents and thicknesses. Traditionally, the
equation governing the total advective flow rate, Q, through a satu-
rated soil liner is given by Darcy’s law as follows;

O = kefriA (1)

where ke = effective hydraulic conductivity of the liner, i = hy-
draulic gradient across the liner, and A = plan area of the liner. The
effective hydraulic conductivity, k., is defined to be the uniform
(i.e., spatially constant) hydraulic conductivity value, which gives
the same total flow rate, 0, as that through the actual hydraulic
conductivity field, k, which varies randomly with spatial position x
(see, e.g., Bogardi et al. 1990). Although the flow is fully three-
dimensional (3D) in this study, the hydraulic conductivity is as-
sumed to be isotropic, such that the directional conductivities at
a point are all equal to & (or to k).
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Hydraulic conductivity is a spatially variable property, both in
natural soils (Byers and Stephens 1983: Freeze and Cherry 1979) and
in compacted soil liners (Rogowski et al. 1985; Benson 1993), which
means that there is always some risk that the flow through a soil liner
will exceed the societally acceptable maximum regulatory limit,
Because & is spatially variable and random, the value of k. used in
Eg. (1) is also random and is some sort of average of k. The goals of
this paper are to estimate the distribution of k. and use this to estimate
the probability that the total low through the liner will exceed the
regulatory limit, henceforth referred to as the exceedance probability.

Several researchers have published information relatin g to esti-
mating kefr. In one of the earliest works on this topic, Warren and
Price (1961) used Monte Carlo simulation to study flow across a 3D
cube and found ke to be the geometric average, kg, of k (for details
about the arithmetic, geometric, and harmonic averages, see Fenton
and Griffiths 2008). Bouwer (1969) and Smith and Freeze (1979) all
found that k. was described well by kg for two-dimensional (2D)
flow. One of the earliest attempts to analytically define ke was
presented by Gutjahr et al. (1978), who used a spectral perturbation
method to determine k.g for an unbounded domain under uniform
gradient. Gutjahr et al. (1978) proposed the following expressions
for the mean of k. for 2D flow [Eg. (2)] and 3D flow [Eq. (3)]:

Ju’kerr = exP{#’lnk} (2)

My = eXp{pn i} (1 + 0 /6) (3)

where p , and Ji"ﬂ « = meanand variance of In k, respectively, which
are obtained from the mean, p,, and variance, o2, of k through the
transformations

oty = In(1 + v,%) (4a)

1
Mg = In(py) — 50'12nk (4b)

where vy = o/, = coefficient of variation of k. If k is lognormally
distributed, as will be assumed here, then exp{p,, &} 18 its median,
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Using a self-consistent model, Dagan (1979) provided upper and
lower bounds on the estimates of w; in an unbounded 3D domain.
His best estimate of u;_, is only slightly larger than that provided by
Gutjahretal. (1978)in Eq. (3). At oy = 1.0 (l.e., v = 1.7), Dagan’s
bounds are approximately 0.1exp{a,;} = gy, = 10exp{uy,},
which is a very wide range (i.e., two orders of magnitude), suggesting
that there is very little confidence in analytical estimates of s . in
three dimensions.

Analysis of flow through an unbounded (i.e., infinite) domain
involves the implicit assumption that the correlation length is zero
because only the ratio of the correlation length to the domain size
matters when it comes to spatial variability. This simplifies the
theory because it results in a white noise random process where
every point in the field is independent of every other point. As far as
the authors are aware, soils always demonstrate some degree of
spatial dependence; thus, such white noise processes are unrealistic.
In other words, estimates of k. in bounded domains with nonzero
correlation lengths are more useful in practice.

For a bounded (i.e., finite) domain, the influence of the liner
aspect ratio (ratio of the liner’s thickness to its plan dimension) on
the distribution of k. was investigated by Liza (2010). Here, the
liner aspect ratio will be defined to be £ = X/+/¥Z, where the liner
has thickness X and planar dimensions Y X Z. The generality that
this definition suggests has not been confirmed. Only the case where
Y = Z is considered here (i.e., a square liner), such that effectively
£=X/Y = X/Z in this study. The authors believe that £ = X//YZ
canbeusedevenif Y # Z; however, the limits of such a belief require
further investigation.

As € approaches zero (i.e., the liner thickness approaches zero),
the total flow through the liner becomes the arithmetic sum of the
flows through each point in the plane of the liner. In this case, ke
becomes the arithmetic average, ks, of k over the liner area (anal-
ogous to a set of resistors in parallel) and p, . = py. Alternatively, as
£ approaches infinity (i.e., flow through a long pipe), ket approaches
the harmonic average, kg, of k. Flow through a pipe is controlled by
the lowest conductivity regions encountered in the pipe, analogous
to a set of resistors in series (see Fenton and Griffiths 1993).
In general, ky is the most strongly low conductivity dominated
average; i.e., ky <kg <ka.

For aspect ratios somewhere between zero and infinity, kg lies
somewhere between k4 and ky. As the liner thickness increases
from zero (arithmetic average), spatial variation through the liner
thickness leads to low conductivity regions that attempt to block the
flow (harmonic average). However, because the flow can seek higher
conductivity paths around the low conductivity regions in two or three
dimensions (Benson and Daniel 1994a), ke is not as low as predicted
by kg . Fenton and Griffiths (1993) used the random finite-element (FE)
method (RFEM) to examine the influence of correlation length and
aspect ratio on the distribution of ke in a 2D bounded domain. For
a square domain, they found ke to be equal to kg, which is in
agreement with the studies by Gutjahret al. (1978) and Dagan (1979) in
the limit when the correlation length is set to zero (unbounded domain).

In three dimensions, the best estimate of w, . is given by Eq. (3)
for unbounded domains (with considerable uncertainty). For bounded
domains, Eq. (3) clearly cannot generally be true. To understand
why this is so, the random field model used here must first be de-
scribed. In this paper, & will be assumed to be lognormally dis-
tributed so that In k(x ) is normally distributed. The In & field is fully
specified by three quantities; i.e., its mean (), its standard de-
viation (o), and its correlation structure (the correlation co-
efficient between any two points in the field). A Markovian
correlation structure will be assumed here (see Vanmarcke 1984) with
a separable correlation function (which is a product of the directional
correlation functions) as follows:

Pink(71,72,73) = exp{=2|r1|/Or}exp{~2|72|/62}exp{—2|r3|/63}
)

where 1; = distance between two points in the field in each co-
ordinate direction, i = 1,2, and 3.

The decay rate parameters 6;, for i = 1,2, and 3, are the directional
correlation lengths. In this study, the correlation lengths are assumed to
be equal;i.e., 8; = 8; = 83 = Oy, Because the correlation function is
separable, its corresponding variance reduction function (Vanmarcke
1984) is also separable and can be explicitly written as follows:

Yink(X, ¥, Z) = y(X)y(Y)y(Z) (6)
where
62 .
v(X)zﬁ[%mp{—;i}ﬂ] 0

and similarly for y(Y) and y(Z). Here, v, (X, ¥, Z) will be referred
to simply as y(V), where V represents the total liner volume (or
element volume, if V is replaced by V,).

Returning to the issue of the accuracy of Eq. (3), if the soil do-
main is bounded and 6, = o, then every realization of the random
conductivity field shows no spatial variability; i.e., all points in the
field have the same (random) value, k. This statement means that
kefr = k for each realization, and thus w, = w,, which is signifi-
cantly higher than suggested by Eq. (3). In other words, Eq. (3)
cannot hold for bounded domains unless @y, = 0.

The overall goal of this study is to provide semitheoretical
equations allowing the simple estimation of the probability that the
total flow through a liner exceeds the maximum flow prescribed by
regulatory agencies, This exceedance probability can be expressed
as Plkesr > kerit), where ke is the maximum allowable regulatory
hydraulic conductivity. Bogardi et al. (1990), Benson and Charbeneau
(1991), and Benson and Daniel (1994a, b), have all conducted re-
search into the reliability of soil liners where the exceedance prob-
ability is considered. However, none of these studies investigated the
influence of spatial variability on exceedance probability. Menzies
(2008) examined the influence of the correlation length and the
distribution of k on the exceedance probability associated with flow
through thin compacted soil liners, and his work agrees with the
small aspect ratio (thin liner) case considered here.

To achieve the overall goal, the subsequent sections of this paper
develop a prediction for the probability of exceedance as a function of
the basic statistics of the random conductivity field (u, o7y, and 6y,z)
and the liner aspect ratio, £. To calibrate the prediction at intermediate
aspectratios (where the theory is not exact), simulations are performed
in which the soil is divided into a set of n cubic elements and the
hydraulic conductivity, k;, assigned to the ith element is taken to be the
geometric average of the random conductivity field over the ith el-
ement domain. This approach slightly underestimates the best esti-
mate of pr, . when 1y = 0 [as in Eq. (3)] but has the correct behavior
for larger Oyx. The choice of a geometric average over cubical
domains is also in agreement with the work by Warren and Price
(1961) and is at the center of the bounds suggested by Dagan (1979).
Finally, the uses of the developed failure probability prediction
equations are illustrated through an example.

Simulations

Monte Carlo simulations were performed using a 3D RFEM pro-
gram, mrflow3d, designed to analyze stochastic fluid flow problems
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(Griffiths and Fenton 1997), which were intended to aid in the
calibration of the semitheoretical failure probability equations de-
veloped subsequently in the paper. The mesh discretization used in
the simulations is illustrated in Fig. 1. The cubes are shaded dif-
ferently in grayscale to emphasize that they are deemed to have
spatially variable hydraulic conductivities.

An impervious boundary was assumed on the vertical edges of the
mesh and a uniform pressure head of 1.0 (with the same units as the
liner dimensions) was applied to the upper surface of the mesh, which
directs the flow downward (i.e., in the X direction on average). The
inputs to the model were g, oy, and 6, 4; the number of elements in
each coordinate direction; and the size of the elements. The simulation
proceeded by simulating focal averages, Gy, fori = 1,2, ...,n where
n is the total number of elements in the soil model. Each local average,
G;, was the arithmetic average of a standard normal field, G, over the
ith element. The final lognormally distributed hydraulic conductivity
value assigned to the ith element was obtained through the trans-
formation k; = exp{u,; + 01nrG:}. Because G; is an arithmetic
average of G, then k; is a geometric average of k over the ith element
(Fenton and Griffiths 2008).

Flow through the model was then estimated using the FE method.
As part of the analysis, kyt, ka, and kg were calculated using the
following expressions for each random field realization:

kefr = puy (QQ ) (8a)
oy
iy = % Sk (8b)

n 1/n n
kg = [H ,} —exp{izilnkg} (8¢)

i=1

where Q = total flow estimated through the current realization of
the random conductivity field by the FE analysis; 0, = total flow
through a soil having uniform hydraulic conductivity, g, through-
outthe soil; k; = local geometric average of the hydraulic conductivity
over the ith element; and n = number of elements in the FE mesh.

Because k is assumed lognormally distributed, the mean and
variance of kg can be computed analytically to be

_ 1 _ i
Mg = exp{ﬁ'lnk + 5 ')’(V)o-lznk} = [1 +vﬂ0_5[1ﬁy(v)] (9a)

0%, = B, [exp{oh ¥(V)} — 1]

2
S e B
Y

]1—7(1/)

Fig. 1. Ilustration of mesh discretization used in the RFEM

where V =X¥Z = total volume of the soil liner. The analytical
computation of the mean and variance of k4 is somewhat more
complicated because k4 is an arithmetic average of a series of
geometric averages, k;. The mean of k, is given by

B 1 N TN .
B, = exp{,u[nk + 5 Y{Ve)ﬂ'lnk} = [1+ vz]ﬂ.ﬁll—?(m] (10a)

where V, = volume of an element. Real soil liners will not have
elements; thus, recommendations are made subsequently in the paper
regarding what the value of V, should be for a real soil. To compare
with the simulation results, the following FE volume is used:
V, = Ax X Ay X Az where Ax, Ay, and Az are the dimensions of each
element in the FE model. Regarding the variance of ky, it is well known
that arithmetic averaging of k leads to a reduction in the variance.
Unfortunately, the variance reduction function provided by Egs. (6) and
(7) gives the amount that the variance is reduced when In & is averaged,
not when & is averaged. Past experience by the authors indicate that the
variance reduction in real space (averaging k) is generally quite similar
to the variance reduction in log space (averaging Ink) for Markov
correlation structures, allowing the following approximation:

A, = =2 [0 1) o

[1 4+

where o'%., = variance of the geometric average of k over the ith
element, having volume V, [see Eq. (95), replacing V with V,].

The distribution of ks can be estimated by simulation. Fig. 2
demonstrates that the frequency-density plot of kg is well fit by
a lognormal distribution, having a p value of 0.84, which indicates
strong support for the fit. On the basis of Fig. 2, and similar results
found for other values of w, vy, O, and & (not shown), the dis-
tribution of k. will be assumed to be lognormal. In this case,
the exceedance probability, Plker > ke, is given by

] k}" —_
P [kett > kerit] =1—q>(——_” = ““"“ff) (11)
In ke

30

Frequency Density

““c =1.0
Lognormal Fit

v, =10

20 25

Tulkeg)
15

i T T T
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Fig. 2.Frequency-density plot of ke, based on 1,000 realizations, with
fitted lognormal distribution
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where ® = standard normal cumulative distribution function,
and gy, and O, = mean and SD of In kg, respectively.

Parameters Used in the Simulations

The soil model used in the simulations (see Fig. 1) had planar
dimensions ¥ X Z=1.0X 1.0. To calibrate the effect of liner
thickness on exceedance probability at intermediate aspect ratios
(where calibration is required), £ was varied from 0.1 to 1.0. Smaller
values of the aspect ratio represent liners used in landfills having
large areal extent relative to their thickness, while larger aspect ratios
(e.g., & = 1.0) correspond to liners used in small leachate lagoons or
using very thick natural clay deposits. In each simulation, w, can be
normalized with respect to the regulatory value, ke, by using
./ keric in place of g, Here, except for the final example where real
values are used, this normalization has been carried out in which
. = 1.0 indicates that the actual mean conductivity is equal to et

The parametric variations considered in the simulations for
a total of npy, =4 X3 X7X4=336 simulation runs (each of
which consisted of ngy, = 1,000 realizations of the k field) were
as follows:

+ Normalized mean hydranlic conductivities: p, =0.5,1.0, 1.5,

and 2.0
« Coefficients of variation: v, = 0.5, 1.0, and 2.0;

+ Correlation lengths: 0y, = 0.01,0.05,0.1,0.5, 1.0, 5.0, and 10.0;
and

+ Aspect ratio of liner: £ =10.1,0.3,0.6,and 1.0.

Values of £ < 0.1 were not considered in the simulation because the

probabilistic behavior of thin liners is already known by theory.

A sensitivity analysis was performed to examine the influence of
the element mesh refinement on the relative accuracy of the output
quantities of interest (kesr, k4, and kg), for the case where £ = 1.0.
To this end, a soil domain of size 1 X 1 X 1 was discretized into
20 %20 X 20 up to 32 X 32 X 32 clements. All mesh resolutions
gave similar results; thus, the 20 X 20 X 20 element mesh was se-
lected for the subsequent simulation runs because it runs about 50
times faster than the 32 X 32 X 32 mesh (e.g., | week rather than
1 year at 2011 computer speeds). The 20 X 20 X 20 mesh dis-
cretization means that each element has dimensions Ax X Ay X
Az =0.05 X 0.05 X 0.05. The correlation lengths considered in the
study thus ranged from significantly less than the element size
(Binx = 0.01 <« 0.05) to significantly larger than the soil regime
(Binr = 10.0> 1.0).

The other aspect ratios considered (e.g., £ = 0.1) were imple-
mented simply by reducing the number of elements in the X di-
rection. Thus, the mesh corresponding to £ =0.1 was of size
2 X 20 X 20, and so on, Although the choice of alower bound on the
aspect ratio of 0.1 may seem questionable, smaller values are not
needed because theory dictates that as £ — 0, then kegr — k4. In other
words, the only uncertainty in analytically predicted probabilities is
atintermediate aspect ratios; therefore, only £ ranging from 0.1t0 1.0
were considered in the simulations. It will be seen in the subsequent
section that even when & = 0.1, the value of k. is very close to its
limiting value of k4, as expected by theory. The choice of a basic plan
area of ¥ X Z =1 X 1 allows the results to be easily scaled to any
liner plan area as long as both the aspect ratio and the ratio of the
correlation length to a representative plan dimension (e.g., v/¥Z) are
maintained. The correlation length must have the same units as the
dimensions of the clay layer.

All simulations involved generating 1,000 (= ngp) realizations
for each parameter set considered. This means that the standard
deviations of each of the averages computed in Eq. (8) are ap-
proximately o/, /Tgim = 0.030; (based on the SD of ky). This also

means that the SD of any probability estimate is approximately
VP(1 = P)/nsim, where P is the estimated probability. In general,
for small probabilities, the SD of the probability estimate is approx-
imately 0.03 \/: , which means that this simulation cannot resolve
accurate probability estimates of less than about 0.001.

Results

Mean Effective Hydraulic Conductivity

The influence of correlation length on the averages (sample means)
of k4, kg, and kg are shown in Figs. 3 and 4 for liner aspect ratios of
0.1 and 1.0, respectively. Both Figs. 3 and 4 are based on simulation
averages and indicate that, as expected by theory, when the cor-
relation length is small all averages start at the median (exp{ . })
and when the correlation length is large all averages approach the
mean (g1, ).

For all aspect ratios considered in this study, the average of kg
was found to lie between the geometric and arithmetic averages. A
comparison of Fig. 3 (¢ = 0.1) versus Fig. 4 (£ = 1.0) reveals that
the average of kefy approaches the arithmetic average when the
aspect ratio is small, as expected. Plots of average k. versus the
aspect ratio (not shown) are basically straight lines over the range
of aspect ratios considered in the simulations, indicating that the
following linear regression is appropriate as a prediction for the
mean of keg:

iy = aiﬁgy’kc + (1 - aﬁ-f)#‘h (12)

where p, . = mean of kg and g, = mean of ks. When £ — 0 (thin
liner), gy, — My, as desired.

The regression coefficient, &,,, is obtained by minimizing the sum
of squared errors between prediction and simulation as follows:

Npar

_ Z4j=1 & (,u, ks 'u'kcj) ("“fw B ‘a‘kdn)
B i 2
572 6 (e — )]

= 0.7669 (13)

where np,; = 336 = total number of parameter sets considered (see
the previous section); &; = aspect ratio of the jth parameter set; My

o
U =10
~dvi=10
E =01

=
[
31
=
£
j="
g
<
vl
;_ O————-~>8 Arithmetic
@) GEOMELTIC
G-———© Effective
&1
g
f=J
] | T I
, 5 5 5 5
102 10 10° 10" 10?

Correlation Length, 8, ,

Fig. 3. Influence of correlation length on the sample means of kg, kg,
and kegr for liner aspect ratio £ = 0.1
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Fig. 4. Influence of correlation length on the sample means of ka, kg,
and kegr for liner aspect ratio £ = 1.0

and p,, = arithmetic and geometric means predicted for the jth
parameter set [see Eqs. (9a) and (10a)], respectively; and =
sample mean ks estimated from the jth parameter set simulation run,
based on 1,000 realizations. Fig. 5 shows the comparison between
the simulated and predicted [Eq. (12)] mean effective hydraulic
conductivity over all parameter sets. The predicted and simulated

results agree very well.

SD of Effective Hydraulic Conductivity

Figs. 6 and 7 show the influence of 6, on the SD of k4, kg, and
kerr for aspect ratios of 0.1 and 1.0, respectively, as estimated
from 1,000 realizations. Figs. 6 and 7 illustrate that as ), increases,
the SD of all three averages increase toward their limiting value of
o = 1.0, as expected by theory (Fenton and Griffiths 1993). Also,
the SD of kg is very close to o, when £ = 0.1, and approaches T
for larger aspect ratios,
As with the predicted mean, a linear regression of the form

Tl = Qb0 g + (1 — agd)oy, (14)

was found to be appropriate to predict the SD of k.. The form of
Eq. (14) ensures that oy, = oy, when & = 0, as desired. The values
of oy, and oy, are calculated using Eqgs. (95) and (105) and the
regression coefficient, a,, is obtained from

= E;:Efj(o-km‘ = g-"cj) (ka B Ehm) —0.9579 (15)

T [&(on, — 0tg)]

where oy, and oy, = SD of the arithmetic and geometric averages
predicted for the jth parameter set [see Eqs. (9b) and (10b)], re-
spectively; and &y, .; — sample SD of kg estimated from the jth
parameter set simulation (1,000 realizations).

Fig. 8 shows the comparison between the simulated and predicted
[Eq. (14)] SD of ke over all parameter sets. The predicted and
simulated results agree very well; however, they show somewhat
more scatter than seen in the comparison of the predicted and
simulated means (Fig. 5). This result is to be expected because the
uncertainty of SD estimates is higher than the uncertainty of mean
estimates.

15

Predicted [,

T \ T 1 T
0 05 1 1.5 2 25 3

Simulated [1 Ky

Fig. 5.Comparison of predicted mean effective hydraulic conductivity
with simulated sample means
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Fig. 6. Influence of correlation length on the sample SD of &y, kg, and
ker for liner aspect ratio £ =0.1

Exceedance Probability

The exceedance probability is the probability that the effective hy-
draulic conductivity exceeds the regulatory hydraulic conductivity,
Plkegt > kerie]. The mean and SD of ke are predicted by Egs. (12) and
(14). As demonstrated by Fig. 2, k. is lognormally distributed with the
parameters given by Eq. (4a). Armed with these results, the probability
of exceedance can be predicted using Eq. (11). Fig. 9 shows how the
predicted and estimated (from simulation) exceedance probabilities
compare for both the thinnest and thickest liners considered here,
£=0.1and 1.0, and the agreement is seen to be excellent.

Fig. 10 shows that out of the 336 parameter sets considered in this
study, six cases showed relatively poor agreement between predicted
and simulated exceedance probabilities. These poor fits have been
identified using plus signs in Fig. 10 and all six cases correspond to
oy = 2.0, v = 2.0, and 0y, = 0.5. There are a total of 16 parameter
set cases where p, = 2.0, v = 2.0, and 0j, = 0.5; therefore, only
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Fig. 7. Influence of correlation length on the sample SD of k4, kg, and
kege for liner aspect ratio £ = 1.0
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about one-third of these cases actually resulted in poor agreement
between simulation and prediction.

Fig. 10 suggests that the prediction of the exceedance probability
provided by the semiempirical theory proposed previously is not
always accurate for large vy and g, and small 6y,;. For example,
errors in estimates of the variance reduction, v, become magnified
when vy is large because all of the predictions for the means and SD
of the various conductivity averages involve terms of the form
[L+v2]' 7. If the cases where w; =2.0 and v = 2.0 are omitted
from consideration the agreement between predicted and simulated
exceedance probabilities improves because all of the plus signs in
Fig. 10 disappear. In addition, because cases where w, = 2.0 gen-
erally correspond to exceedance probabilities well in excess of 50%,
accurately predicting their exceedance probabilities is not so im-
portant. For practical cases, the prediction of the exceedance
probability given by Eq. (11) is seen to be quite accurate and the
prediction will be used subsequently to investigate the behavior of
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probabilities for £ =0.1and 1.0

1

+
()]
= +
o0 (3
(=
+ NAe
—_ o~
EO .
_ku
= .
A S *
Fy =
= o . -
— .
ﬂq:r‘; o
Q o
= b — .
'BQ Ypge
oo . .
p‘d_ s +
i
o
o Be
(=
I T I

T T T T 1
0 01 02 03 04 05 06 07 08 09 1
Simulated P[ keﬁ >kl
Fig. 10. Comparison of predicted and simulation-based exceedance
probabilities over all parameter sets (relatively poor agreements are
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the exceedance probability with respect to the basic parameters of
the random hydraulic conductivity field; i.e., fin, by, Vs, and £
Fig. 11 shows that the exceedance probability basically decreases
toward zero with decreasing correlation length for any liner thickness.
The fact that the exceedance probability approaches zero at small
correlation lengths is expected, That is, when the correlation length
is small (e.g., fjnx =0.1), the mean of all three averages shown in
Figs. 3 and 4 are approaching the median, which is exp{u,,; } = 0.71
when w, = 1.0 and v; = 1.0. Because this is considerably below the
standardized regulatory value used in this study, ke = 1.0, and
because the SD of all three averages become small when the corre-
lation length is small (see Figs. 6 and 7), the probability of exceedance
becomes understandably very small when 8y, — 0, as seenin Fig. 11.
On the other hand, as 8),; — o, the mean of all three averages
approaches u,; (see Figs. 3 and 4) and the SD of all three averages
approaches o (see Figs. 6 and 7). In other words, when 8}, = % and
# =1 and oy = 1, as considered in Fig. 11, p,, =, =1 and
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Ok = O = 1 are obtained such that vy, = 1/1 = 1. The parameters
of the lognormally distributed ke in this case are then oy, =
V/In(1+12) = 0.8326 and juy,,, = In(1) — (0.8326)% = —0.3466;
thus, according to Eq. (11)

Plkett > kerig] = 1~ ‘I’(%) =0.339

which is what all curves in Fig. 11 are tending toward as 6y, — <.

Of additional interest in Fig. 11 is the fact that a worst-case cor-
relation length exists, where the exceedance probability reaches
a maximum, for the more commonly encountered thinner liners
(£ < 0.5) but not for the thicker liners. When £ < 0.5, the worst-case
correlation length is seen to be about 50% of the plan liner dimension
(e.g., V'YZ). The existence of a worst-case correlation length (e.g.,
Ok = 0.5VYZ)is important because it can be conservatively used in
the event that the true correlation length is unknown—and the true
correlation length is almost always unknown at a site. However, the
worst case does not always occur at an intermediate correlation length,
as is also seen when Fig. 12 is considered. In general three worst cases
should be considered (114 — 0, Onk = 0.5v/¥Z, and Oy, —= ), to
find the most conservative estimate of the exceedance probability.

Fig. 12 illustrates how the exceedance probability changes as
a function of w, and 1, ;. Recall that u, is normalized in this paper by
ket 80 that kege is taken as 1.0. In general, if the mean effective
hydraulic conductivity, s, exceeds ke = 1, then the exceedance
probability, Plketr > keni], will be larger than 50%.

Consider first the limiting behavior of Fig. 12. As 01,z = 0, ket
becomes equal to the median, g, = exp{py,; }- Whenv, = 1.0 and
o = 1.5, then g = 0.059 so that = 1.06 > kege. At the same
time, the SD of the effective hydraulic conductivity, o, is going
to zero as Oni—0 (see Figs. 6 and 7), which means that
Plkett > kerin) = 1.0. In other words, when the median of k,
exp{fu,,}» exceeds 1.0, the exceedance probability is near 1.0 at
small correlation lengths. In this case, the worst case (highest
exceedance probability) occurs when 8y, — 0, which is as seen in
Fig. 12. As the correlation length increases from zero, the exceed-
ance probability decreases from 1.0, which is because o, increases
rapidly with increasing 61,4 (see Figs. 6 and 7).

When the median of & is less than 1.0 (i.e., u, less than about 1.4
when v, = 1.0), the exceedance probability starts near 0 at small
correlation lengths, As the correlation length increases, both the mean
and SD of kg increase, leading to an increase in the exceedance
probability, as seen in Fig. 12. When p, = 0.5, the maximum of Hy
(attained when 61, ¢ is large) is still only half the regulatory k.. That is,
when g, = 0.5 and v = 1.0, the maximum exceedance probability,
which is about 109, occurs when )« is large. In other words, when the
mean hydraulic conductivity is small, relative to the regulatory value,
and when & > 0.3 (see Fig. 11), the worst-case exceedance probability
occurs when 6y, — ; i.e., when Mg = My and o, = o

Fig. 13 illustrates how the exceedance probability is influenced by
the coefficient of variation, 1. Fig. 13 presents somewhat counter-
intuitive results, in that as v; increases the exceedance probability
decreases. The reason for this is because at least at some level of
geometric averaging, both u, and gy . decrease with increasing vy
[see Egs. (9a) and (10a)]. This means that My, decreases with in-
creasing vy, resulting in the exceedance probability decreasing (see
Benson and Daniel 1994b).

Estimating Probability of Exceedance: Example

The methodology presented in this paper to estimate the probability
of exceedance is perhaps best illustrated through an example.
Consider a proposed liner that has a plan area of 10 X 10m and
thickness, X, of 1 m such that ¢ = 1/4/10 X 10 = 0.1. While this is
considered to be a very small liner, the procedure presented sub-
sequently is identical to that required for any liner geometry. This
geometry was selected because it can be compared with the sim-
ulation results carried out previously.

Suppose that testing of the clay intended to be used to construct
the liner suggests that w, = 1 X 10™°m/s, which is equal to the
regulatory conductivity, ke; = 1 X 10’9m/s, and has v, = 1.0. The
final constructed liner will be assumed to have a correlation length of
Binx = 3m in all three directions (which is approximately the worst
case). The desire is to quantify the probability that the actual kg will
exceed the regulatory value.

One fundamental issue that first needs to be resolved is how to
choose the size of the elemental geometric averaging domain. In the
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previous simulations, this size was quite naturally the size of the FEs
used. However, a real liner will have no preordained element size.
Nevertheless, as soon as the liner thickness increases from zero,
some geometric averaging will take place, as previously discussed.
It is recommended here that the size of the cube over which geo-
metric averaging takes place should be the lesser of (1) 5% of the
representative plan dimension, v/YZ, or (2) the liner thickness, X. In
this example, 0.05v/YZ = 0.05+/10 X 10 = 0.5m, while the liner
thickness is X = 1m. Thus, a geometric averaging element di-
mension of Ax = Ay = Az =0.5m was selected.

The two variance function values that are required by the method
[see Egs. (9) and (10a)] are y(V) = y(X)y(Y)y(Z) and y(V,) =
v(Ax)y(Ay)y{Az), where according to Eq. (7)

v(0.5) = 2(325)2 Fg;—s) + exp{—@g'i)} - 1} =0.8976

Similarly, y(1.0) = 0.8104 and (10.0) = 0.2551, which according
to Eq. (6) gives

y(Ve) = ¥*(0.5) = 0.8976° = 0.7231
y(V) = v(1.0)y(10.0)(10.0) = 0.8104(0.2551)% = 0.05272

Egs. (9a) and (9b) can now be used to find the mean and standard
deviation of the geometric average kg

1 x 107°

g = -~ =0.7201 x 10%m/s
G [1+12]0A5(1 C‘AUSZTZ)

(1 x 1079)? 0.05272
= [1 -+ 12]1 00272 [(] 12) _1]

=0.1389 x 1077 m/s

Similarly, Eq. (10a) can be used to find the mean and standard
deviation of the arithmetic average ky

1 x 1079

_ _ -9

Py = (1 4 12P3070720 — Q08T % 207 /s
0.05272(1 x 107%)* 2007231

Thy = [+ 12]170.7231 [{1 +17) - 1]

=0.1683 x 107" m/s

Using o, = 0.7669, as found in previously from the simulation
results, the mean kg can be estimated from Eq. (12) as follows:
M, = 0.7669(0.1)(0.7201 x 107%)
+ [1=0.7669(0.1)](0.9085 x 107%)
=0.8940 x 10" m/s

whichis close to u, , as expected, because the aspect ratio of the liner
is relatively small (£ = 0.1). Using e, = 0.9579 in Eq. (14) allows
the estimation of the SD of keg

i = 0.9579(0.1)(0.1389 x 1077)
+[1—0.9579(0.1)](0.1683 x 107%)
=0.1655 x 107 m/s

such that vg, = oy /i, = 0.1655/0.8940 = 0.1851. Transform-
ing into log space [Eq. (4a)] gives the distribution parameters of k.

Tk = 1/ In(1 + 0.18512) = 0.1835

Pinky = In(0.8940 x 107°) ~ 2(0.1835)" = ~20.85

and the final probability of exceedance estimate is obtained using
Eg. (11)

In(1 x 107%) +20.85
Pt > k] =1m®( : 0.183)5 )

=1~ ®(0.691) = 0.241

In terms of the simulation, this example is equivalent to the case
where u; = 1.0, 1, = 1.0, X XY XZ=10.1 X 1.0X 1.0, and 6y, =
0.3. Using these parameters, the simulation-based probability of
exceedance is (.242, which is in excellent agreement with that
predicted using the theoretical approach presented previously.

Summary and Conclusions

Considering 3D spatial variability, the distribution of the liner ef-
fective hydraulic conductivity, kg, is predicted using theoretical
results known at both small and large aspect ratios and correlations
lengths, combined with calibration by RFEM Monte Carlo simu-
lations at the intermediate aspect ratios and correlation lengths, The
predicted distribution of ks is then used to estimate the probability
that the soil liner will fail to maintain an acceptable overall level
of safety with respect to hydraulic flow; i.e., to estimate the prob-
ability that k. exceeds some prescribed regulatory conductivity,
Plkefr > kerit]. The paper considers only risk associated with Darcy
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flow through a liner, and not, for example, with chemical transport.
However, the proposed methodology can also be used to assess liner
risks as a result of other liner limit states.

In estimating the mean and variance of the effective hydraulic
conductivity of a liner, it was assumed that there is some elemental
level over which geometric averaging of hydraulic conductivity
always occurs; therefore, the arithmetic average is really an arith-
metic average of geometric averages. The authors recommend that
the geometric averaging element be cubic with the side dimension
equal to the smaller of 0.05+/¥Z or the liner thickness, X. Another
assumption made in the model is that the variance reduction because
of arithmetic averaging of k over the liner volume is approximately
equal to the variance reduction because of arithmetic averaging of
In k over the same volume. These assumptions are believed to be
reasonable, although a few discrepancies between the predicted and
simulated exceedance probabilities may suggest that they are in-
accurate when p, = 2k.i; and v = 2. The authors note that a liner
having u; = 2k would probably be unacceptable in any case; thus,
these conditions are of limited practical interest.

The following observations regarding the behavior of the dis-
tribution of 4.5 can be made on the basis of this study:

1. The mean of k.ry increases from the median of k(exp{u,, . }) to
the mean of k(1) as the correlation length increases,

2. The SD of ke increases from zero to o as the correlation
length increases.

3. The distribution of kg is at least approximately lognormal
(see Fig. 2).

4. The distribution of ke lies between the distributions of k4 and
kg (where it is noted that k4 is actually an arithmetic average
of geometric averages) and its parameters are accurately
estimated by simple linear regression.

The following observations regarding the behavior of the
exceedance probability can be made on the basis of this study:

1. The exceedance probability increases with increasing corre-
lation length if the median of & is less than the regulatory
conductivity, ke, (the case where the median exceeds k¢, is of
little interest because this case will almost certainly be con-
sidered unacceptable).

2. The exceedance probability increases as the liner becomes
thinner (decreasing £).

3. The exceedance probability increases with increasing hydrau-
lic conductivity mean, p;.

4. The exceedance probability decreases with increasing vy for
fixed p,. This possibly counterintuitive observation arises
mostly because of the blocking influence of downstream var-
iation when that variation increases in magnitude (i.e., when the
low conductivity regions become even lower).

5. A worst-case correlation length is seen to exist (having the
highest exceedance probability), which can be conservatively
used in the event that the actual correlation length is unknown.
In the cases where the median of k is less than k.., the worst
case oceurs when 6y, = 0.5+/YZ for aspect ratios £ =<0.3
and at 8,4 — o for higher aspect ratios.
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Notation

The following symbols are used in this paper:
A = liner plan area = ¥ X Z;
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o

ka
kcril

ket

o

N~ "

Ao

Y Yink

Ay

Az

Bink
My
M,

Hogyj

'LL"(:H
Hig

= standard normal random field;
= local average of G over the ith element

(having volume V,);

spatially variable random hydraulic
conductivity field;

arithmetic average of element geometric
averages over the liner volume;

prescribed regulatory maximum allowable
hydraulic conductivity;

effective hydraulic conductivity that would
lead to the same total flow through a uniform
liner as in the actual liner;

= geometric average of hydraulic conductivities

over the liner volume;

= harmonic average of hydraulic conductivities

over the liner volume;
geometric average of hydraulic conductivities
over the ith element (having volume V,);

= number of elements in the FE model;
= number of parameter sets considered in the

simulation;

number of simulations used to estimate
statistics of each parameter set;

total flow through the spatially random soil
liner;

total flow through a soil liner having
spatially uniform hydraulic conductivity
equal to uy;

= total volume of the soil liner = X X Y X Z;
= element volume over which geometric

averaging takes place = Az X Ay X Az;

= liner thickness;
= spatial coordinate in three dimensions;

liner plan dimension;

= liner plan dimension perpendicular to ¥ and

assumed equal to Y;

regression coefficient used in the prediction
of s

regression coefficient used in the prediction
of Ty

variance reduction functions when averaging
Ink over some volume;

X-direction dimension of geometrically
averaged element;

Y-direction dimension of geometrically
averaged element;

Z-direction dimension of geometrically
averaged element;

directional correlation length of the Ink
random field in the ith direction, i = 1,2, 3;

= correlation length of the In k random field;

mean of the hydraulic conductivity field &;
mean of the arithmetic averages of element
geometric averages k; over the liner
volume;

= mean of the arithmetic averages of element

geometric averages k; over the liner volume for
the jth parameter set;

= mean of effective hydraulic conductivity keg;
= mean of the geometric average of the

hydraulic conductivity over the liner volume;
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Mg

Mooy

Hoan g
Fin ke

£
&

Pink

Ok
Ok,

Tkyj

Theeip
T, ke

T, kei
[y

TL.

Tink
T beggr

Ti
Vg

Ukety

mean of the geometric average of the
hydraulic conductivity over the liner volume
for the jth parameter set;

sample mean of the effective hydraulic
conductivity from the simulation runs for the
Jth parameter set;

mean of log-hydraulic conductivity field In k;
mean of the log-effective hydraulic
conductivity;

ratio of liner thickness X to plan dimension v/YZ;
ratio of the liner thickness to plan dimension
for the jth parameter set;

correlation coefficient between two pointsin the
In £ random field;

SD of hydraulic conductivity field k;

SD of the arithmetic averages of element
geometric averages &; over the liner volume;
SD of the arithmetic averages of element
geometric averages k; over the liner volume
for parameter set j

SD of effective hydraulic conductivity ke
SD of the geometric average of the hydraulic
conductivity over the liner volume;

SD of the geometric average of the hydraulic
conductivity over the liner volume for the
Jth parameter set;

sample SD of the effective hydraulic
conductivity from the simulation runs

for the jth parameter set;

SD of the geometric average of the hydraulic
conductivity field over the ith element;

SD of log-hydraulic conductivity field Ink;
SD of the log-effective hydraulic
conductivity;

distance between two points in the liner;
distance between two points in the liner in the
ith direction, i = 1,2, 3;

coefficient of variation of hydraulic
conductivity k;

coefficient of variation of effective hydraulic
conductivity keg; and

standard normal cumulative distribution
function.
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