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The effect of interface roughness in problems of soil-structure interaction is demonstrated using a simple finite element 
interface model. Three examples of geotechnical interest are presented to demonstrate the approach, and comparisons are 
made with closed-form solutions where available. Both rough and smooth extremes of interface behaviour are analysed. The 
smooth interface modelling is performed without the use of specialized elements, and involves uncoupling and rotation of free- 
doms parallel to the proposed interface direction. It is suggested that, in view of the uncertainties often associated with inter- 
face properties, a rational approach for engineering purposes is to obtain solutions for the perfectly rough and perfectly smooth 
cases leading to upper and lower bounds on the full range of interface behaviour. 
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Au moyen d'un modkle simple d'interface en ClCments finis, l'on dCmontre l'effet de la rugositC de l'interface dans les prob- 
lkmes d'interaction sol-structure. Trois exemples d'application gkotechnique sont prCsentts pour dCmontrer la prockdure, et 
des comparaisons sont faites avec des solutions rapprochCes lorsque disponibles. Les deux extrgmes de comportement d'inter- 
face rugueuse et lisse sont prCsentCs. Le modkle d'interface lisse est rCalisC sans faire appel B des Cltments spCciaux, et implique 
le decouplage et la rotation des libertCs parallkles B la direction proposCe de l'interface. Compte tenu des incertitudes souvent 
associCes aux propriCtCs de l'interface, il est suggCrC comme procCdure rationnelle pour les finis de 1'ingCniCur d'obtenir les 
solutions pour les cas de mgositC parfaite et de lissage parfait fournissant les limites infkrieure et supCrieure du domaine com- 
plet de comportement de l'interface. 

Mots elks : ClCments finis, interfaces, interaction sol-structure, fondations, charges lattrales, ponceaux, pieux. 
[Traduit par la revue] 

Can. Geotech. 1. 25, 158-162 (1988) 

1. Introduction 2. Method of simple interface modelling 
Numerical analysis of soil-structure interaction frequently 

includes interface effects, which must be adequately modelled. 
These effects are characterized by concentrations of shear dis- 
placements once certain shear stress levels are reached, and 
can be described by a range of constitutive assumptions. 

Most problems of soil-structure interaction involve com- 
pressivecontact stresses at the interface, and in such cases, rel- 
atively simple numerical models may be adopted, as will be 
shown. For certain problems, it may be possible to model 
interface behaviour by simply refining a conventional finite 
element mesh in the vicinity of the interface. The elements 
near the interface would then be given suitable properties and a 
nonlinear analysis performed, possibly using plasticity theory. 
This approach suffers from the disadvantages that the mesh 
must remain continuous and that occasional numerical diffi- 
culties occur when adjacent elements are assigned greatly dif- 
ferent strength properties. For more advanced applications 
however, especially in the area of jointed rock masses, special- 
ized interface elements should be used (Goodman et al. 1968). 
For example, in general applications where the compressive 
ambient stress referred to above cannot always be relied upon, 
the solution processes should allow for the possibility of separ- 
ation and rebonding at the interface (e.g., Ghaboussi et al. 
1973). In the area of soil-structure interaction involving 
anchors, an extensive study of the effects of tensile separation 
and different interface assumptions has been made by Rowe 
and Davis (1982). 

The present note is confined to problems in which no separa- 
tion can occur and it is proposed that in the first instance only 
the perfectly rough and perfectly smooth cases should be con- 
sidered. Once the full range of behaviour has been covered, it 
can then be decided whether the use of more specialized inter- 
face elements is justified. 

Conventional finite element analysis presents a natural way 
of modelling rough conditions provided the mesh is sufficiently 
refined. In an analysis such as this,failure or slip would occur 
not at the interface itself but at the nearest stress point in the 
weaker of the two materials sandwiching the interface. 

Perfectly smooth conditions can be simulated by allowing 
unrestricted movement in the slip direction. A smooth rigid 
footing at the surface of a soil layer, for example, is easily 
modelled by prescribing vertical displacements at the inter- 
face, but placing no resistriction on the horizontal movements 
(e.g., Griffiths 1982). In general, however, a smooth interface 
orientated at a certain angle to the horizontal may be required. 
Situations such as this are dealt with using a two-step approach. 

The first step involves the introduction of an extra freedom at 
nodes that lie on the interface. The second step requires that the 
freedom directions at nodes that lie on the interface be trans- 
formed such that they lie parallel and perpendicular to the pro- 
posed interface direction. These modifications result in three 
freedoms per node along the interface, as shown in Fig. 1. The 
freedoms parallel to the interface are uncoupled on each side, 
but the freedom in the normal direction is common to both 
sides. 

For cases where the required smooth interface direction does 
not lie in the Cartesian x- or y-directions, a transformation 
involving freedom rotation must be performed. This is a tech- 
nique well known to structural analysts for dealing with skew 
boundary conditions. 

The remainder of this paper describes application of this 
method to three boundary value problems of geotechnical 
interest. The particular problems are chosen because the inter- 
face properties in each have a significant influence on the com- 
puted response. Where possible, comparisons are made with 
available closed-form solutions. 
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FIG. 1. Freedom numbering for inclined interface. 

FIG. 2. Mesh for smooth wedge analysis. 

3. A smooth wedge pushed into a cohesive soil 

The mesh shown in Fig. 2 was used to analyse the behaviour 
of a plane strain wedge pushed into a layer of cohesive soil. 
The soil was assumed to behave as an elastic-perfectly plastic 
material obeying a Tresca failure criterion. The wedge itself 
was given a relatively high strength and stiffness. The program 
data and mesh geometry were arranged so that the apex angle 
of the wedge could be easily varied. 

Along the smooth interface between the wedge and soil, the 
freedoms on each side were uncoupled and their directions 
rotated to be parallel and perpendicular to the interface direc- 
tion. A viscoplastic algorithm was used with iterations to 
achieve convergence to the failure criterion. In order to use the 
conventional finite element strain-displacement relationships, 
the element displacements at the interface nodes had to be 
transformed back into Cartesian directions before computing 
the strains. After calculation of stresses and strains at the 
Gauss points, any body forces in Cartesian directions that were 
generated at the interface nodes during the stress redistribution 
process had to be transformed into the relevent directions 
before solution of the equilibrium equations. 

Vertical prescribed displacements were applied to the sur- 
face of the wedge and the reactions back-figured from the 
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FIG. 3. Bearing capacity for a smooth wedge. 

C 
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FIG. 4. Relative movements between soil and smooth wedge. 

resulting converged stresses. The soil resistance as it was 
mobilized was nondimensionalized in the form of a bearing 
capacity factor N, defined: 

where Q = axial force on wedge (or lateral force on disc), B = 
full width of wedge (or disc diameter), and cu = undrained 
shear strength of soil. 

In Fig. 3, the computed failure values for a range of apex 
angles are compared with those due to Meyerhof (1961) and 
are seen to be in close agreement. 

Figure 4 shows how the displacement vectors of the wedge 
and soil differ along the interface, owing to the additional free- 
dom. The wedge moves vertically downwards, whereas the 
soil experiences little movement parallel to the interface direc- 
tion. Further results for this particular problem in the axisym- 
metric case have been presented by Lane (1986). 
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FIG. 5. Mesh for culvert analysis. 
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FIG. 6. Computed and closed-form solutions for a "thick" culvert. FIG. 7. Computed and closed-form solutions for a "thin" culvert. 
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FIG. 8. Meshes used for (a) plane strain and (b) nonaxisymmetric strain analyses. 

4. Stresses around buried culverts The mesh was designed on the basis of circular arcs of ele- 

interest in the analysis of this type of structure has grown in ments concentric wit; the culvert itself. Although the mesh 

recent with the realization that it represents a form of shown in Fig. 5 is drawn with straight-sided elements, it was 

low-cost tunneling (e.g., Duncan 1979; Katona 1983). One of found that more stresses were computed when curved 

the main design that must be faced is to obtain the elements were used with the mid-side nodes also placed on the 

minimum depth of cover that can safely support given loading arcs. 

conditions at the ground surface. One ring of elements was used to model the culvert, and 

~~~h rough and smooth interface conditions between the cul- stresses were sampled at the eight Gauss points in the adjacent 

and soil can be modelled numerically using the methods thin ring of soil elements. Because of the form of the analytical 

described. F~~ a closed-form solution giving the solution, the Cartesian stresses were converted into polar coor- 

stresses exerted bv the soil on the culvert is available (Burns dinates using the usual transformation for rotation angle 0:  
and Richard 1964). The solution is limited to the case of a cir- 
cular culvert embedded at great depth within an elastic soil, 
and subjected to a uniform applied stress at ground level. 

The mesh used for this analysis is given in Fig. 5 and was 
constructed using eight-noded quadrilateral elements through- 
out, with reduced integration to form the stiffness matrix. It 
may be noted that, owing to symmetry, only one-quarter of the 
problem was analysed and the surface loads were applied at a 
distance 6R (Leonards et al. 1982) above the crown, where R 
was the radius of the culvert. 

or = a, cos2 0 + 0, sin2 0 + T~ sin 20 

[2] ae = a, cos2 0 + ax sin2 0 - T , ~  sin 28 

1 
Tre = - (a, - ox) sin 20 + Txy COS 20 

2 

The computed results are compared with the closed-form 
solutions in Figs. 6 and 7 for the cases Rlt equal to 20 and 100 
respectively, where t was the thickness of the culvert. The 
finite element results confirm that the method accurately repro- 
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FIG. 9. Load-displacement response for rough and smooth cases. 

duces the different behaviour exhibited by the rough and 
smooth cases (Mokrani 1986). Of particular interest is the 
change in the distribution of radial and shear stresses around 
the culvert as its relative rigidity is varied. 

5. Laterally loaded disc in cohesive soil (two-dimensional) 
The final example considered in this paper involves the 

behaviour of a laterally loaded disc in a cohesive soil. Such a 
configuration approximates the situation occurring within a lat- 
erally loaded circular pile at sufficient depth below ground 
level such that plane strain conditions apply. Clearly, such a 
two-dimensional analysis could by tackled using the plane 
strain mesh given in Fig. 8a. In this case however, a nonaxi- 
symmetric strain analysis has been used employing the mesh in 
Fig. 86. This latter approach has applications for problems 
involving nonaxisymmetric loading of axisymmetric bodies, 
but is also used in this case because it produces a particularly 
simple conversion from rough to smooth conditions at the 
soil-pile interface. This is because the nodal freedoms include 
a tangential component, which enables unrestricted slip to be 
modelled without any transformations. 

Computed results obtained by Griffiths and Lane (1986) are 
compared with analytical solutions of Broms (1964) for the 
smooth case, and of Randolph and Houlsby (1984) for the 
rough case, in Fig. 9 and are in good agreement. The lateral 
displacement of the disc has been nondimensionalized by the 
diameter B, and the factor N, is again defined by [I]. It may be 
noted that the ultimate load in the rough case is only about 
30% higher than that in the smooth case, suggesting that the 
use of specialized interface elements in this instance would be 
unnecessary for engineering purposes. 

6. Conclusions 
A simple method has been described for finite element 

modelling of interface effects in problems of soil-structure 
interaction. It is proposed that the perfectly smooth and per- 
fectly rough cases should be analysed in the first instance to see 
whether the use of specialized interface elements is justified. 
The method of implementation of smooth conditions involved 
the introduction of an extra freedom at nodes along the inter- 
face. This was followed by a transformation of the freedom 
directions such that they were oriented parallel and perpendic- 
ular to the proposed interface direction. Three examples of 
geotechnical interest were presented to demonstrate the 
method, and the numerical results obtained compared favour- 
ably with available closed-form solutions. It was noted that in 
the third example involving a laterally loaded pile, no transfor- 
mations were necessary to achieve smooth conditions because 
components of the freedoms in the nonaxisymmetric analysis 
were already oriented in the tangential directions. 
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