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Risk may be estimated by multiplying the probability of failure by the consequence. This is acceptable for
systems that have a single mode of failure. For systems that have multiple failure modes, such as land-
slides, the consequences should be assessed individually for each of the failure modes. This paper pro-
poses a new framework of quantitative landslide risk assessment, in which consequences are assessed
individually. The framework is generally applicable, and the landslide risk assessments of two typical

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The evaluation of the stability of natural or constructed slopes
has traditionally been based on a deterministic approach and
quantified by a safety factor. In such an approach, geotechnical
engineers try to deal with uncertainties by choosing reasonably
conservative parameters. However, it is common to use the same
safety factor for different type of application without regard to
the degree of uncertainty involved in its calculation. Through reg-
ulation or tradition, the same safety factor is often applied to con-
ditions that involve widely varying degrees of uncertainty. Since
this is not a very logical strategy [4], numerous studies have been
undertaken in recent years to develop probabilistic methods that
deal with uncertainties in a systematic way (e.g., {14,8,5,9,2,10,
11,22]). Of particular importance has been the development of
the random finite element (RFEM) to model the spatial variability
of soil properties (e.g., [9]). It is noted, however, that all numerical
studies are aimed at pursuing more rigorous methods of estimat-
ing the probability of failure (py). The overall risk is then calculated
as

R=p,xC (1)

where R is the risk and C is the consequence,
The above method works well for systems that have a single
failure mode. In landslide problems, as noted by Chowdhury and
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Xu [3] and Huang et al. [11], multiple failure modes coexist. Be-
cause failure modes and consequences are correlated, the conse-
quence associated with each failure mode should be assessed
individually, leading to a modified definition of risk as

"y
R= Zpﬁ x G (2)
i=1

where pg and G are the probability and consequence of failure mode
i, and nyis the number of identifiable failures.

To be able to use Eq. (2), one needs to assess pg and ¢; individ-
ually for each failure. This can be achieved easily in the framework
of Monte Carlo simulation. Using this framework, the new method
(i.e., Eq. (2) ) and the traditional method (i.e., Eq. (1) ) are con-
trasted in Fig. 1, where Ny;,, is the number of simulations.

The new framework has two key modules, i.e., a module to as-
sess safety and a module to assess consequence. In this study, the
limit analysis programs developed at the University of Newcastle
[18-20,15,16,13] are adopted to check the safety. Both lower
bound and upper bound analyses are carried out, and a brief review
of the methods will be given in the next section. Because the vol-
ume of the sliding mass is directly related to the consequence of
a landslide, this quantity is used to quantify consequence in this
study. A more complete assessment of the consequence should
also quantify the dynamic behaviour of the sliding soil, which will
be explored in a future paper. To identify the volume of the sliding
soil used to be thought of as a difficult task, but this study shows
that the classic K-means clustering method (e.g., [1]) works very
well for this purpose. A brief review of this method is presented
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Fig. 1. Traditional and new frameworks of risk assessment.

in Section 3. When spatial variability needs to be taken into ac-
count, which is especially the case in landslide risk assessment, a
third module to generate random fields is needed. While there
are several options available for achieving this goal (e.g., [6]), we
have chosen the Karhunen-Loeve expansion method to be used
in tandem with our limit analysis programs. A brief review of the
Karhunen-Loeve expansion method is given in Section 4, Two
examples are given in Section 5 to illustrate the new framework.
Both examples show that the proposed framework is necessary
for a quantitative assessment of landslide risk.

2. Review of finite element limit analysis

The lower and upper bound theorem of classical plasticity the-
ory is a powerful tool for analyzing the stability of problems in soil
mechanics. The theory assumes a perfectly plastic soil model with
an associated flow rule. The lower bound theorem states that any
statically admissible stress field will furnish a lower bound (or
‘safe’) estimate of the true limit load. A statically admissible stress
field is one which satisfies (a) the stress boundary conditions, (b)

equilibrium, and (c) the yield condition (the stresses must lie in-
side or on the yield surface in stress space).

The upper bound theorem states that the load (or the load mul-
tiplier), determined by equating the internal power dissipation to
the power expended by the external loads in a kinematically
admissible velocity field, is not less than the actual collapse load.
Based on the duality between the upper and lower bound methods,
Krabbenhoft et al. [13] derived an upper bound formulation in
terms of stresses rather than velocities and plastic multipliers. This
allows for a uniform implementation of lower and upper bound
theorem in the mathematical programming form as

maximize o
subjectto A =oap+py (3)
f(o) <0

where A is an equilibrium matrix (which also contains boundary
conditions), ¢ is a vector of stresses, the external load consists of
a constant part pg and a part proportional to a scalar parameter o,
and f defines the yield condition.

It should be mentioned that the matrix A in Eq. (3) can be
amended to include stress or velocity discontinuities, which have
previously been shown to be very efficient (e.g., [20]).

Although Eq. (3) can be solved by public-domain second order
cone programming packages (e.g., SeDumi and Mosek), our in-
house solvers and limit analysis programs are used in this study
[15,16,13].

3. The K-means clustering method

Although static analyses are conducted in this study, the nodal
displacements at the limit state are still useful indicators of a land-
slide. It is, however, unsatisfactory to use any predefined threshold
of displacement to identify the sliding mass and, from the point of
view of classification, a sliding mass can be identified without
using such a threshold. Although there many sophisticated classi-
fication techniques are available (e.g., [1]), the classic K-means
algorithm works perfectly well for the application considered in
this study. Consider a set of observations (d;, dj, ..., dy), where
each observation is an m-dimensional real vector, the K-means
method aims to cluster the N observations into K sets (K < N) by
minimizing a squared error function of the form

K N
=33
k=

1n=1

¥ ¢ @

where ¢ (k=1,...K) is the cluster centre.
Given ¢} at iteration i, the K-means clustering method computes
¢! by the following two steps:

(a) Assign set k to observation d, by minimizing the squared error

function J.

(b) Update cluster centres ci'* by means of d.

Stop when ¢! = c. For the first iteration, ¢ can be set randomly.

In this study, the nodal displacements serve as observations (d.
,dy, ..., dy), where N is the number of nodes. The number of sets
(K) is two (i.e., stable and sliding masses).

4. The Karhunen-Loeve expansion method

There are several random field generation methods available
(see, for example, [6]). The Karhunen-Loeve expansion method
was chosen because it has analytical solutions for the exponential
covariance function considered in this study.
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Let X(x, ) be a random field, where x € D (physical space) and
w € Q (a probability space). The covariance function, denoted as
Cx(s, t), where s, te D, is bounded, symmetric and positively de-
fined. Using Mercer's Theorem, it can be decomposed according to

Cx(5,0 = S A (5)
i=1

where J; and f;(x) are the eigenvalues and eigenfunctions of Cx(s, t},
respectively.

The eigenfunctions Cy{s,t) form a complete orthogonal set
satisfying

[D f()fit)dx = 6 (6)

Based on Eq. (6), the eigenvalues and eigenfunctions of Cx(s, t)
are the solutions of the following Fredholm equation:

[) Cx(s, B (s) = A (1) 7)

Numerical methods are usually required to solve Eg. (7),
although exact solutions are available for some classes of covari-
ance function (see, for example, [12,17]). Zhang and Lu [21] pre-
sented an analytical solution for an exponential covariance
function. The computation involves only the solution of a one-
dimensional super characteristic equation (i.e., (11)).

The exponential covariance function in one dimension is
Cx(¥1,X2) = 0% €xp (_——PHG— x2|) (8)

X
where oy is the standard deviation and 8, is the spatial correlation
length. 6, is also called the scale of fluctuation, which is equal to
twice the so-called autocorrelation distance.

The eigenvalues and their corresponding eigenfunctions can be
expressed as

20,0%

= 9
2wl +1 ®)

1

fit9) = ———
How? +1) + 6«

[Bw; cos(w;x) + sin(w;x)] (10)

where w,, are positive roots of the characteristic equation:
Be(62w? — 1) sin(wL) = 26,wcos(wlL) (11)

and L is the length of the random field.
For two-dimensional problems, Eq. (8) can be written as

G, 90, (920 = o exp (=22 ep (=) a2

X Y

and Eq. (7) can be solved independently for each dimension yielding .

the eigenvalues and eigenfunctions as
hij= K02 (13)

fii®,y) = fix)fiy) (14)

Since Eq. (5) has to be truncated to a finite number of terms, a
significant concern is that the simulated variance will be reduced.
In order to control this reduction, the eigenvalues are sorted in
descending order and the number of terms is decided when the
eigenvalues have decayed enough to satisfy the condition

An
= < Tol 15
2 <To (15)
where Tol is typically set to 107>, Figs. 2 and 3 show how the eigen-
values decay in one and two dimensions, where @ is the dimen-
sionless spatial correlation length defined as

1

0.1
0.01
o 1E-3
‘<E
1E-4
1E-5
1E-6
i T IR TR S B | T T
1 10 100 1000
Number of terms (n)
Fig. 2. Decay of eigenvalues in one dimension.
1 E|
0.1 3
] © =0.0625
0.01 4
&
= ‘1E-315
1E-4 4
1E-5 4
1 10 100 1000 10000
Number of terms (n)
Fig. 3. Decay of eigenvalues in two dimensions.
]
@ =- 16
: (16)

It can be seen from these figures that the required number of
terms increases when the spatial correlation length decreases.
For the smallest & considered in this study, more than 50,000
terms are used.

5. Examples

The landslide risks of two hypothetical slopes are assessed in
this section. Both slopes are assumed to fail under undrained con-
ditions, with the undrained shear strength being modelled as a
random field. The Tresca failure criterion is used in the limit anal-
ysis calculations and all other parameters are assumed to be deter-
ministic. Two thousand Monte Carlo simulations were carried out
for the cases where py is larger than 10%. More simulations were
conducted for other cases to ensure that the maximum error in py
is less than 0.01 at a confidence level of 90%. The first example is
a slope in a uniform layer. The histogram of the sliding mass at col-
lapse suggests a wide range of consequences, which implies that
the proposed framework should be adopted. Parametric studies,
carried out to investigate the influence of anisotropic random fields
on the risk of a landslide, suggest that the horizontal spatial corre-
lation length has a much more significant effect on the risk than
the vertical spatial correlation length. The second example is for
a slope in a two layered soil, with the undrained shear strengths
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being modelled by two independent random fields. The coexis-
tence of two (i.e., shallow and deep) failure mechanisms is shown
clearly by the histograms of the sliding mass at collapse. Both
examples show that the proposed risk assessment framework must
be used to obtain a quantitative estimate of the risk.

5.1. Undrained slope failure in a uniform layer

The profile of the slope in a uniform layer is shown in Fig. 4. The
slope has a height H =10 m and soil has a unit weight of y; = 20 kN/
m® and an undrained shear strength of c, = 50 kPa. The boundary
conditions are rollers on the left and right vertical boundaries,
and full fixity at the base. Deterministic limit analyses indicate that
the lower and upper bounds on the safety factor are 1.446 and
1.494, respectively. The safety factor obtained by an elasto-plastic-
ity finite element analysis based on strength reduction method is
1.465.

Probabilistic analyses are carried out according to the proposed
framework (Fig. 1b). The undrained shear strength is assumed to
be a lognormally distributed random wvariable with mean
M., = 50kPa and a coefficient of variation V., = 0.5. In the follow-
ing, the dimensionless spatial correlation length is defined as

0
e = 0 (17)
Note that this definition is different from Eq. (16), where the max-
imum side length of the random field is used.

Fig. 5 shows the histogram of the sliding mass at collapse from
2000 lower bound simulations for the case @,=2 and @, =0.25.In
this figure, all simulations are included in the histogram on the left,
while the histogram on the right includes only simulations in
which failure occurs. Clearly, the volume of the sliding mass varies
over a wide range. Figs. 6 and 7 show a simulation where a shallow

| 20m ! 20m 1 20m

Fig. 4. Undrained slope in a uniform layer.
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Fig. 5. Histogram of sliding mass (@, =2, @, = 0.25, lower bound analysis).
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Fig. 6. A typical simulation of random field (0, =2, @, = 0.25, shallow failure, dark
and light regions depict “strong” and "weak" soils, respectively).

Fig. 7. A typical simulation by upper bound analysis (@,=2, &, =0.25, shallow
failure, sliding mass is in red). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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Fig. 8. A typical simulation of random field (@, =2, @, = 0.25, deep failure, dark
and light regions depict “strong™ and “weak" soils, respectively).

Fig. 9. A typical simulation by upper bound analysis (@,=2, @,=0.25, deep
failure, sliding mass is in red), (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

failure occurs, while Figs. 8 and 9 show a simulation where a deep
failure occurs. The consequences associated with these two failures
are very different, which confirms the need to assess the conse-
quence individually for each failure. In this study, the volume of
the sliding mass is used to quantify the consequence, so that the
risk is equivalent to the mean sliding mass of the failures.
Probabilistic parametric studies are also presented for the case
where the horizontal and vertical spatial correlation lengths @,
and @, are both varied in the range {0.25, 0.5, 1.0, 2.0, 4.0}. Figs. 10
and 11 show that increasing the horizontal spatial correlation
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length will increase both pyand the risk. The effect of the vertical
spatial variability of the soil strength, however, is much less.
Figs. 10 and 11 suggests a relatively large difference between the
py obtained by lower and upper bound analyses. This is explained
in Fig. 12, which shows that a small (less that 10%) difference in
safety factor estimates would lead to a large (almost 10 times) dif-
ference in py. The relatively large differences between the lower
and upper bound pyestimates suggest that significant model uncer-
tainties may exist, while lower bound analysis offers a conserva-
tive estimate.

5.2. Undrained failure in a two-layered slope

The profile of the slope in a two-layered soil deposit is shown in
Fig. 13. The slope has a height H = 24 m, with the top layer having a
unit weight of y; =19 kN/m?® and an undrained shear strength
¢y = 70 kPa. The lower layer has the same unit weight but a higher
shear strength of ¢,;; = 100 kPa. The boundary conditions are rollers
on the left and right vertical boundaries, and full fixity at the base.
Limit analyses showed that the lower and upper bounds of safety
factor are 1.199 and 1.229, respectively. The safety factor obtained
by an elasto-plasticity finite element analysis based on strength
reduction method is 1.211.In the probabilistic analyses, the un-
drained shear strengths of the two layers are assumed to be log-
normally distributed random variables with means y_ = 70kPa
and p,, = 100 kPa and coefficients of variation Vi, =V, =0.3.
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Fig. 12. Comparison of lower and upper bound analyses (@, =0.25, &,=0.25, py
obtained by lower and upper bound analyses are 0.162 and 0.018, respectively).

| 40m | 32m | 20m |
— I |
. = 70kPa, V,
18m " *
=19kN /m’ 24m
10m)| T T
. TR IRRR]_[Am
Fig. 13. A two layer slope.
140 25
20
& & 15
o =
@ 1]
3 3
g g
L & 10
5
Q
0 500 1000 1500 0 500 1000 1500

Sliding mass (m2)
Failure

Sliding mass (m?)
All simulations

Fig, 14. Histograms of sliding mass (@, = &, = 0.25, lower bound analysis).

Two independent random fields are used to model the spatial var-
iability of the shear strength, and only isotropic random fields are
considered for the sake of simplicity.The histograms of the sliding
mass under different spatial variability are shown in Figs. 14-19
for the lower bound analyses. These histograms illustrate clearly
two (i.e., shallow and deep) failure mechanisms, which are more
obvious when the spatial correlation lengths get larger. For the
case of @x= &,=0.5, Fig. 20 shows one typical shallow failure,
while Fig. 21 shows one typical deep failure. It is interesting to note
that in the second failure case, shallow and deep failures occur
simultaneously (e.g., [7]).The two failure mechanisms can be sepa-
rated by employing the Expectation Maximization (EM) algorithm
(e.g., [1]). The distribution of the sliding mass is assumed to be a
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mixture of two lognormal distributions. The probability density
function of the mixed model is
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Fig. 21. A typical simulation by lower bound analysis (@, = @, = 0.5, deep failure,
dark and light regions depict “strong” and “weak" soils, respectively).
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Table 1
Mixture model of sliding mass (all simulations, lower bound analysis).
(2] b Ha (mz] ag (ml) s Hs [ml) Os (mz)
0.25 0.72 788.40 159.27 0.28 426,00 144.50
0.5 0.76 793.50 184.94 0.24 360.12 99.032
1.0 0.76 791.71 176.31 0.24 325.20 55.69
2.0 0.71 802.76 153.91 0.29 320.04 41,78
4,0 0.71 797.32 120.27 0.29 32214 32.30
8.0 0.70 808.76 92.51 0.30 268.86 19.23
Table 2
Mixture model of sliding mass (failure only, lower bound analysis).
@ $a pa(m?) oy (m?) s #s (m?) g, (m?)
0.25 0.77 693.67 173.68 0.23 353.12 68.93
0.5 0.73 669.85 137.21 0.27 319.59 63.65
1.0 0.68 699.17 145.86 032 322.82 52.60
2.0 0.61 735.50 117.26 0.39 32035 45,07
4.0 0.66 774.37 114.69 0.34 321.92 27.74
8.0 0.63 793.02 86.77 0.37 322.84 23.08
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350 100 b
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Fig. 22. Histograms of factor of safety (@, = @, = 1, lower bound analysis).

where ¢, and ¢4 are the fractions of the shallow and deep failures,
respectively.

Once the six parameters ¢s, da, 1, Thxe Uiy and o, in Eq.
(18) have been calculated by the EM method, the means and stan-
dard deviations of the sliding mass corresponding to the shallow
and deep failure mechanisms can be obtained. For example,

1
My = eXP(liiny ) (Ofnx)z)
(19)

05 = Hyyfexp (Gh)?) ~ 1

where u,, and o, are the mean and standard deviation of the sliding
mass of a shallow failure.

The fitted mixed model is plotted as the red’ lines in Figs. 14-19.
The mean and standard deviation of the volumes of the sliding mass
are shown in Table 1 and Table 2. As mentioned previously, a com-
plete assessment of the consequence of collapse should also quantify
the dynamic behaviour of the sliding soil. As a preliminary estimate,
the data in Table 2 can be used to estimate the risk. For example, one
can estimate the risk as

' For interpretation of colour in Figs. 14-19, the reader is referred to the web
version of this article.
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R = pp(s s + dqtaC) (20)

where C; and Cj, are the consequences of shallow and deep failures
which can be assessed according to the mean sliding masses p; and
Ha-

The above estimate is more accurate than the one obtained
from traditional methods (i.e., Eq. (1) ) as it takes into account both
shallow and deep failure mechanisms.

Since the failure mechanism of every simulation is identified,
we can generate the histograms of the factor of safety of both fail-
ure mechanisms. Fig. 22 shows these plots for the lower bound
analyses with @, = @, =1. It can be seen that the distributions of
the factor of safety for the two failure mechanisms are quite
similar.

Figs. 23 and 24 show the influence of the spatial variability on p;
and risk, respectively. From these figures it can be seen that
increasing the spatial correlation length increases both pyand risk.

6. Concluding remarks

A new framework of quantitative risk assessment for landslides
is proposed, which is based on the logic that the consequence
should be assessed individually for each failure mode. Although
only landslide risk is considered in this paper, the framework is
generally applicable to other types of risk assessment in geotechni-
cal engineering. For this study, consequence is assessed by com-
puting the volume of the sliding mass. A more complete
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assessment of consequence would model the dynamic behaviour
of landslides, which is a future research objective.
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