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Stability of earth slopes. Part I: two-dimensional analysis in closed-form
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SUMMARY

A closed-form solution (CFS) satisfying both equilibrium of moments and forces for the stability analysis of
earth slopes in 2D is proposed. The sliding surface is assumed circular and treated as a rigid body, allowing
the internal state of stress to be ignored. The proposed solution can be applied to both homogenous and non-
homogenous slopes of either simple or complex geometry, and can also deal with any kind of additional load-
ing. The method is based on the fact that, all possible forces acting on the slope can be projected onto the failure
surface where they are broken into driving and resisting ones. Comparison of the safety factors obtained by the
proposed CFS and those obtained by traditional limit equilibrium methods, as applied to several test examples,
indicates that the proposed method is more conservative, whereas moreover, it gives a more realistic point of
view for the formation of tension crack in slopes. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Almost a century has passed since the failure of the Stigberg quay in the harbor of Gothenburg
(5 March 1916), which became the subject of the first attempt to use ‘slices” in slope stability
analysis [1-3]. The analysis in question, which assumed that the slide occurred along a circular arc,
resulted later in the development of the *Swedish Slip Circle Method’ (also called the ¢, =0 method).
Fellenius [4, 5] developed this method further creating a method known as the Ordinary Method of
Slices or Fellenius’s Method. Since then, a large number of limit equilibrium methods (LEM) have
been developed, for example, [6-13]; the limit equilibrium analysis considers the ultimate limit state of
the slope. In all these methods, the available number of equations of equilibrium is smaller than the
number of unknowns in slope stability problems. As a result, all equilibrium methods of slope stability
analysis employ assumptions to render the problem determinate (e.g., [14]). Generally, the assumptions
made for the different unknown variables involved in the equilibrium equations do not result in much
difference in the final factor of safety. However, as it shall be shown later on, great differences may be
observed and indeed, on the unsafe side. It is noted that, in essence, the only significant difference
among the different methods is the assumption made about the location and inclination of the interslice
forces or the relation between the interslice normal and shear forces.

The existing LEM can be broadly classified into ‘simplified’ methods (e.g., Bishop simplified,
Corps of Engineers, Janbu simplified/corrected, Lowe-Karafiath and Fellenius) and ‘rigorous’
methods (e.g., Spencer, Morgenstern-Price). The simplified methods satisfy either force or moment
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equilibrium (not both at the same time). On the other hand, rigorous methods satisfy both force and
moment equilibrium, but usually, the analysis is more tedious and may sometimes experience non-
convergence problems (e.g., [15-18, 9]). Detailed comparison of limit equilibrium slope stability
analysis methods have already been reported in numerous textbooks (e.g., [15, 14, 19-21]), hence,
in the present paper, further reference is made only where needed.

In this paper, a closed-form ‘lumped mass’ approach to slope stability is proposed, in which the soil
mass over a circular slip surface is considered as rigid body [9]. Thus, no assumptions are necessary
regarding the internal state of stress, and the soil mass can be concentrated at its centroid as shown in
Figure 1. This is in contrast to non-circular failure surfaces, which can induce significant internal
stresses within the sliding volume. The fact that the internal state of stress of the sliding mass is ignored
in the current work should not lead the reader to conclude that the proposed method is similar to
Fellenius methed, where the internal forces are erroneously ignored for the sake of simplification. When
the sliding mass is divided into slices, each slice must necessarily be accompanied by consideration of
lateral (inter-slice) forces corresponding to the reactions from adjacent slices. In this work, the internal
forces are ignored because the whole sliding mass over the circular surface is considered as a rigid
body, thus these forces do not affect the rotation. Finally, it is mentioned that it is well known that
slides diverge more or less from the pure rotational pattern of failure. However, the present method
includes less assumptions and thus, it could be a tool for the effective evaluation of the existing methods.

2. DEFINITION OF SAFETY FACTOR

The factor of safety for slope stability analysis is usually defined as the ratio of the ultimate shear
strength divided by the mobilized shear stress at working stress levels. Although there are several
ways of formulating the factor of safety F§, for the special case of circular failure studied herein, the
expression of safety factor in terms of moments is the most appropriate:

Resistingmoments M.
FSy = £ ==L

(1

Drivingmoments ~ My

where, My is the sum of the resisting moments and M, is the sum of the driving moments. The center of
the circle is taken as the moment point for convenience. The factor of safety is assumed to be the same
at all points along the slip surface, which is typical for conventional LEM (e.g., [20]).

Figure 1. Example of a homogenous slope of simple geometry. The weight of the failure mass per unit
length (shady area) is concentrated at the center of mass, point C. The projection of weight W intersects
the slip circle at point T
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3. THE PROPOSED ANALYTICAL SOLUTION

3.1. General concept

The methodology that follows is based on the fact that, at the initiation of pure rotational sliding along
a circular surface, no shear forces are developed inside the failure mass. This allows internal forces to
be ignored and the soil weight W above the slip surface to be idealized as a single force acting at the
center of (failure) mass (Figure 1). The concentrated weighting force is then projected onto the failure
surface in order for the driving and resisting moments about the center of rotation to be calculated.
Similarly, other possible forces acting on the slope (e.g., pore pressures, seismic, footing, water in
tension crack, etc.) can be projected onto the failure surface before calculating their moments.

Adopting Coulomb’s equation, and working with effective stresses (Equation (2)), the safety factor,
FS)yis given by Equation (3). The last stands for homogenous slopes in which only gravity and pore
pressures act. The radius r in Equation (3) cancels out, thus, the proposed methodology satisfies force
equilibrium as well. Detailed analysis of the forces included in the equation in question is given in the
next section, Moreover, examples of some of the most commonly used forces in slope stability analysis
are given in Section 4.

7 = ¢ + (o-u) tany’ = ¢’ + o tany’-u tany’ 2)

c’Lr + Wcos (E -5) tane’r-»_utang’r
FSu = 2 o -
W sin (E —5) r

¢’L + Wcos g -5) tanyp’-U tang’

= = FSf
W sin @ -5)

3)

The general methodology involves the extensive use of equations, which include integrals for the
calculation of ¢’, W, U and & in Equation (3). All the integrands, however, lead to simple analytical
solutions. With these equations, the proposed method leads to closed-form solution (CFS) that give
the safety factor of a slope for any specific geometry and slip circle.

3.2. Forces acting on the slip surface

3.2.1. Resisting force F, due to cohesion. The resisting force due to cohesion is simply derived by
integrating cohesion, ¢’, along the slip surface (Equation (4a)). For the homogenous slope of
Figure 1, the limits of the integral in question are defined by the entry and exit points of the slip
circle (points A’ and T, respectively), and they are given in angular form (angle o; and o,
respectively). It is noted that, as the vector of the cohesion force at each point along the circular
failure surface is always tangential to this surface, there is no need for the resultant cohesion force
F, to be broken into components.

% %
Fe = f c’ds = f ¢'rdo = ¢"r{ay-o;) (4a)
o o,

i

Heterogeneity. If the slip circle meets soil layers with different cohesions, Equation (4a) is
modified accordingly. For example, for the non-homogenous slope of Figure 2, the cohesion
force is:

Fe = C’ﬂ’(ﬁz—m]) -+ c’yr(otﬁ-otg) (4b)
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Figure 2. Example of a heterogeneous slope with complex geometry. The sliding mass is divided into six
(homogenous) parts by an interlayer line (represented by function g,) and a number of vertical lines passing
through points x;—xs. The free ground surface consists of four parts represented by functions fi—f;. The

3.2.2.

failure surface crosses two soil layers.

Resisting friction and driving forces, F, and F, respectively. In this case, the weight, W of the

failure mass, as well as the x-coordinate of its center of mass, x, must be known. The gravity force
corresponds to the weight of the area per meter depth (it refers to the third dimension), enclosed
between the failure surface and the free ground surface (Figure 1, shady area). The method can be
used in homogenous and non-homogenous slopes and in either simple or complex geometries
following these steps (Figures 1 and 2):

(1)

)

(3

“

The free ground surface is divided into n parts, such that each one of them can be represented by
a (simple) function y=f(x), i=1,2,...,n. The use of polynomial functions is suggested on
account of their simplicity and because they can effectively represent almost any slope profile.
However, any other reasonable function type could be used provided that its integral can be
obtained analytically.

If there are m+ 1 soil layers of different unit weight and/or shear strength values, each interface
line between two layers in contact is represented by a (polynomial) function y=g;
x),i=1,2,...,m.

The failure mass is divided into g homogenous parts encompassed by an upper and a lower
function, that is, fi(x) and g;(x) or fi(x) and f;.(x) or g,(x) and f;..(x) and two lateral boundaries
in the form of y=x;.

The gravity force W, and the x-coordinate of the center of the mass x¢, are given by Equa-
tions (5) and (6), respectively. The equations in question refer to the specific homogenous slope
shown in Figure 1(a). For other cases, they should be modified as needed.

XA X7
W= / Ts {ﬁ‘!‘: (x)’ﬁ:il‘c (x)} dx + ] Vs {fAT (x) Feire ()C) } dx &)
Xa XA
total moments [ ¥sx{fra (1) Seire (¥)} dx + [T vox{fiar () Foiee () } dx
Xc = : = (6)
total weight w
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The procedure continues with the vertical projection of the force W onto the failure surface, where it
is broken into two components, one tangential (F,;) and one normal (N,,). The first one is the driving
force due to gravity (Equation (3)), whereas the second one is multiplied by the friction coefficient,
tan ', to give the total friction force F,, that corresponds to the product ¢’ tan¢' (in stress term)
from Equation (2). Hence,

Fy = Wsin("/5-8) 7

F, = N,tang’ = Wcos("/;-0) tanp’ (8)

where, from Figure 1(a), d=tan ~'(yr/xp).

This procedure involves a major assumption regarding the point of action of F; and N, which is
considered to be the same as the point of action of W on the slip surface. From a historical
perspective, it is noted that this assumption is commonly used by various Methods of Slices (MoS).
As shown in the Appendix, where a more rigorous approach is presented, the assumption made
herein is not true; however, it always leads to the same factor of safety as that obtained using the
rigorous approach. Thus, due to its simplicity, the assumption is adopted and the two components of
W on the slip surface (F; and N,) can be considered representative of the resultant normal and
driving forces of the failure mass.

Heterogeneity. If the slip circle meets  soil layers with different friction angles ¢ 'y, then, k driving
and friction forces must be calculated. Each pair of forces corresponds to the mass above the part/
length of the slip circle that has the same . For example, in the two-layer system of Figure 2, one
pair of forces should be calculated for x=x, to x=x; and one for the rest going from x=1x, to x=x;.

It is apparent that in case of heterogeneous slopes, the sliding mass is divided vertically into parts
(k parts for a k —layer system). Although the present analytical solution ignores the inter-part forces
(essentially a term equivalent to the ‘interslice forces’), as the number of interfaces created in the
analysis is small (k—1 interfaces for a k —layer system), the error in the safety factor value is
minor. A relevant example of a homogenous slope divided into two parts is given at the end of
Section 5. It may be noted that in the case of various MoS, where the number of slices is very
small, the main source of error is due to the fact that the failure surface is represented by a coarse
polygonal path, something that is avoided by the present method where the circular surface is
strictly retained. On the other hand, if the number of slices in a method of slices is great enough for
the failure surface to be closely represented by a smooth polygonal path, the error in the safety
factor value is mainly due to the assumptions made for the interslice forces. However, even if the
Fellenius method is used where interslice forces are completely ignored, the safety factor values are
usually close to the ones obtained by more rigorous methods (e.g., Bishop [6], Janbu [7] or
Morgenstern-Price [9] method).

3.2.3. Pore pressure force F,, The pore pressure distribution is shown in Figure 3 with dotted line
(function u(x)). The resultant pore pressure force U can be calculated according to Equation (9a), as
the area bounded between this line and the circular failure surface. However, as y,, is constant, it is
more convenient for U to be calculated directly from the area between the free water surface and the
slip surface, where all functions are already known according to Equation (9b).

i / ‘IT {u(x)-feire(x) } dx = / "‘T {9 b (X)-7,foire (%) } dx ©4)
Sl U x s (0) feire ()} dx + f " Uit () ()} (9b)

The buoyancy force U, which acts radially on the slip surface, is multiplied directly by the friction
coefficient, tan ¢’ giving the force F, that corresponds to the term u tan ' in the Coulomb equation
(Equation 2), that is,

F, = Utany’ (10)
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Figure 3. Example: Line of action on the slip surface of the resultant pore pressure force; C’ is the centroid of
the area bounded by the water surface and the slip circle. The pore pressure at a given point i along the slip
surface equals u; =7,/ ;.

For information purposes, it is noted that, U acts at the intersection point between the radius passing
through the centroid C of the area bounded between the free water surface and the slip surface (point
I, Figure 3). The coordinates of point C’ are as follows:

total moments f;:: VX {58 (X)fire () } dx + f;;r Yy fBr (%) Feare (%) } dx (11a)
x - P e —
3 total weight u

_ total moments f;; Y s (V) SFeire(¥) 3y -+ fy; Y Ufer (9) SFeire () }y

e = (11b)
¥e total weight U

4. EXTERNAL FORCES ACTING ON THE SLOPE

The methodology described is easily generalized to include other types of external forces commonly
encountered in slope stability analysis. Some of these load cases are shown in Figure 4 and include
water-filled tension crack, pseudo-static earthquake loading (horizontal and vertical components) and
footing loading on the crest of the slope or elsewhere and pool loading due to free-standing water
adjacent to the slope. As a general rule, additional forces of this type are projected onto the slip
surface and broken into normal and tangential components. Each normal component is multiplied by
both the coefficient of friction tan ' and the slip circle radius » and then added to the numerator of
the safety factor equation (Equation 3). The tangential component is multiplied only by the radius r,
before it is added to the denominator of the safety factor equation.
Some additional comments are given as follows:

* Heterogeneity: If the slip circle meets various soil layers of different friction angle ¢, then, the
normal component of each weighing force W; is multiplied by the respective coefficient of friction
tan ;" (Figure 5(a)). The same goes for the pore water pressures, where the distribution function
u(x) is divided into parts in a manner similar to the one applied to W; (vertical division). Each one
of these parts is multiplied by the respective coefficient of friction.

* Tension crack: The tension crack is taken into account by simply changing in Equation (5) the
boundary x4- (entry point, Figure 1) with the x —coordinate of the location of the tension crack,
x4+ (entry point, Figure 4). Conservatively, it is assumed that the soil has no tensile strength.

* Water in tension crack: This distribution is triangular as shown in Figure 4, and the resultant force
V acts perpendicularly to the tension crack wall at one third of the height of water. As the force

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:1969-1986
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Figure 4. Example: Possible external forces acting on a homogenous earth slope (see Figures 1 and 2 for

more details about gravity force and pore pressures).
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Figure 5. Non-homogeneous slopes: (a) vertical division of sliding mass and (b) division of distributed load.

V cannot directly be projected onto the failure surface, but gives moment as for the center of ro-
tation, it is broken into two components, a radial and a perpendicular to the radial component (V,
and V,, respectively). The first one gives neither moment (as for the center of rotation, O) nor fric-
tion force, thus, it can be neglected. The second one is projected onto the failure surface, where it
is broken into a tangential and a normal component (V, , and V. ,. respectively). It is noted that,
the force V. , produces equal moment as for the point O comparing with the respective one of its
mother force V, that is, Vy,= V(O II)=V, . Moreover, as it shown in Figure 4, the force V con-
tributes to the friction along the slip surface through the normal compenent ,V, ,; however, this
contribution is rather minor.

* Seismic force: Pseudo-static seismic forces act at the center of the (sliding) mass, and can be applied
directly in homogenous earth slopes as shown in Figure 4. The direction of the components of
seismic force (horizontal and vertical), are also indicated. An additional step is needed if the slip
surface crosses more than one layers (e.g. see Figure 6) where the failure mass should be divided
by horizontal and/or vertical lines (boundaries) passing through the points on the slip surface where
¢’ changes. For every sub-area that arises from the division, both the magnitude of earthquake forces
and the coordinates of each center of mass must be calculated. Following this, each gravity force is
then multiplied by the required seismic coefficient. Finally, the forces are projected onto the slip
surface and broken into normal and tangential component as described previously.

* Pool loading: This distribution is triangular as shown in Figure 4, and the resultant force V, acts
perpendicularly to the slope face at one third of the vertical height of the water above the slope toe.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:1969-1986
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Figure 6. Horizontal and vertical seismic forces in a two-layer system.

e Distributed loadings in non-homogenous slopes: If the projection of a distributed load (e.g., footing,
pool loading) on the slip surface meets more than one soil layers, that is, more than one ¢’ values,
then the distributed loading should be broken into parts having as division criterion the change of
angle ¢’ (e.g., Figure 5(b)).

5. EXAMPLES

Two examples of the proposed CFS, one referring to a homogenous slope and one to a non-
homogenous slope (Figure 7(a) and (b), respectively), are presented. A third example refers to a
homogenous slope consisting of two layers of the same material to show the influence on the safety
factor of neglecting the inter-part forces after dividing the slope into two parts.

Additional loading, such as pore water pressures, footing on the crest and pool loading, have been
included. The results obtained by the proposed method and four of the most familiar LEM' are
summarized in Table I (column I and columns II-V, respectively). The deviation values (minimum
and maximum) in the same table are given in relation to the safety factor values obtained by the
proposed CFS. All solutions with the proposed method have been performed on an Excel™ (MS
Office™) spreadsheet, where, in addition, it is noted that the Solver add-in was used to minimize
the objective function for the factor of safety given by Equation (3) (modified as necessary for
different loading cases and stratification). The optimization parameters were given as the center
coordinates (x,, y,), the circle radius r, and the x —coordinate of the tension crack (entry point at x,»).
The optimized parameters of the critical slip circle, as found for each example using the proposed
method, are presented in Table IL

Homogenous slope (Figure 7(a)): The slope has height = 10m and gradient tan f=1: 1. The char-
acteristics of the soil material are as follows: ¢* =20kPa, ¢’ =31° and y, = 20kN/m>. In Table I, case 1a
considers only the gravitational force of slope. In case 1b, the solutions were performed allowing the
various methods to take into account possible formation of tension crack. A horizontal water table
height H,,=3m above the slope toe within the soil is assumed in case 1¢ (Table I) continuing down-
stream along the soil surface profile. In Case 1d (Table I), the water table has been extended outside
the slope to include pool loading. In cases le and 1f, the soil is considered dry (no pore water
pressures), whereas vertical point loads (200 and 50 kN, respectively) have been applied near the crest
(horizontal distance from slope toe and slope crest 11 and 1 m, respectively).

Non-homogenous slope (Figure (7b)). The two-layer slope has a total height H=7.5m and gradient
tan f=1.5: 1. The soil characteristics of the upper layer (LayerI) are: ¢’ ;= 20kPa, ¢’ ;=31 and y, ;=
20kN/m?, and of the lower layer (Layer II): ¢’ ;= 15kPa, ¢’ ;=25° and ¥s.11= 16kN/m”. The thick-
ness of Layer Iis 3.5 m, whereas Layer II has infinite depth (2 =4m for Layer Il if measured from slope
toe). Case 2a (Table I) considers only the gravitational force of slope. In addition to the gravitational
force, cases 2b and 2c assume horizontal water table at height H,,=4 and 2 m, respectively, above the
slope toe. In case 2d, the water table is 2 m above slope toe, and it is extended outside the slope to in-
clude pool loading. In cases 2e and 2f the soil is considered dry (no pore water pressures), whereas

'LEM solutions were obtained using the package Slide™.
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Figure 7. Application examples, Cases 1a and 2a refer to the gravitational force only, whereas in case 1b,
tension crack was allowed to be developed. Text in brackets following the notation of water table height
(H,,) indicates other loading cases (see also Table I).

vertical point loads (200 and 50 kN, respectively) have been applied near the crest (horizontal distance
from slope toe and slope crest 7 and 2 m, respectively).

An important outcome from Table I is that, in some cases, the deviation between the safety factor
obtained by the proposed CFS and the different MoS can be very high, either on the safe or unsafe
side. For the limited number of examples shown in the table in question, the deviations range from
—12.4% (safe side) to 29.1% (unsafe side).

Homogenous slope consisting of two layers of the same material: Consider the 7.5-m high slope
with gradient 1.5 V:1 H of Figure 7(b). The slope, here, consists also of two horizontal soil layers,
but of the same characteristics. Two material cases have been considered, case 3a with ¢’ =20kPa, ¢’ =
31° and y, = 20kN/m? and case 3b with ¢ * = 15kPa, ¢ * =25° and y, = 16kN/m>. The height / of the under-
lain layer is considered variable and ranges from 4 =0 to h=H =7.5m allowing the study of the influence
of h on the safety factor. For comparison purposes, the center and the radius of rotation have been kept
constant (x,=1.795 m,y,=9.645 m and R=9.810m). It is apparent that these values do not reflect a
minimum safety factor value, but this is not the point herein. As shown in the diagram of Figure 8, the
safety factor value is influenced by the location of the vertical interface that passes through the intersection
point between the slip circle and the line dividing the soil mass into two layers of the same material (see
also Figure 5(a)). However, neglecting the inter-part forces acting on the vertical interface results to a mi-
nor error in safety factor, which is generally up to 1% or a little higher. It is remarkable that the two curves
are almost parallel to each other and that they present minimum for the same /£ value. Finally, it is
reminded that if the proposed method is applied to a stratified slope with kstrata, only the internal forces
acting on k£ — 1 interfaces are ignored (usuvally £ — 1 =1 or 2; for homogenous slopes, k — 1 =0) in contrast
to Fellenius method where the internal forces of n — 1 interfaces are ignored (where # is the number of
slices used).

In addition to these, 20 other examples are given aiming at a more objective and integrated
comparison of the proposed method with some of the most well known and commonly used MoS in
practice. The soil and geometric characteristics of slopes are given in Table III, whereas the safety
factor values are shown in Table IV; values in gray shade indicates that the critical failure surface
involves the formation of tension crack (such formation was free to be developed in all solutions).
For comparison reasons, the safety factor of slopes obtained by using the proposed method without
the formation of tension crack is also given (see column II in Table IV). The safety factor deviations
are given in Table V. All slopes are considered dry, and moreover, where tension cracks have been
developed in the solutions, these are free from water. The 20 highway slopes that were chosen can
be considered representative to give quite secure conclusions, as they cover a wide range of soil
types and slope geometries; height, 320 m; inclination angles, 32°-68°. All the examples except for
the 11th, which refers to a slope at Mount Cronos (Ancient Olympia), refer to slopes of the wider
area of North Greece. It is worth mentioning that the first 10 slopes consist of the same soil
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STABILITY OF EARTH SLOPES. PART I: 2D ANALYSIS IN CLOSED-FORM 1979

Table II. Radius and coordinates of the center of the critical slip circle for the examples presented in Table 1.

Case # X5 Yo r X Case # X0 Yo r

la 1.335 14.886 14.946 nfa 2a 1.795 9.645 9.810
1b 1.185 14.237 14.287 —11.587 2b 0.811 8.565 8.604
Ic 1.158 14.576 14.622 nfa 2c 1.181 8.923 9.001
1d 1.283 14.877 14.932 nfa 2d 0.780 8.979 9.012
le 8.934 20.878 22,709 nfa 2e 0.781 7.746 7.785
1f 1.273 12.450 12.515 n/a 2f 1.296 8.226 8.328

X, =x-coordinate of the tension crack.

16 il SR SR S

PR S,
S o o s - -
136 g SN T T T T T—e-Taséda

~m—Case 3b __ ."_

|

‘Slope toe B \
'Fs 1.45 {"exitpoint")._._Slope- crest intersection point
/ 4 ,
f 1
1.4 44 =

1.35 !L_Mg—ﬂ——ﬁ&—e{’r-‘_ﬂ_-—*d_.’_.__.
}

0 1 2 3 4 5 6 7
Height hof lower layer measured from slope toe (m)

“Entry point"

1.3

Figure 8. Example of homogenous slope consisting of two layers of the same material: Influence of the
location of the vertical interface dividing the slip mass into two parts on the safety factor.

Table I1I. Comparison examples: Soil and geometric characteristics of slopes.

# of example ¢’ (kPa) w ) y (kN/m*) H (m) tan f§
1 47 35 20 3.0 2.500
2 47 35 20 5.3 2.500
3 47 35 20 15 2.500
4 47 35 20 9.0 2.000
5 47 35 20 9.0 1.000
6 47 35 20 6.2 1.500
7 47 35 20 4.6 1.500
8 47 35 20 4.3 1.500
9 47 35 20 9.1 1.500
10 47 35 20 19.5 2.500
11 5 32 21 10.0 0.625
12 20 31 20 9.0 e b
13 0.1 36 18.5 16.5 0.543
14 15 34 21 5.0 1.000
15 22 28 175 6.5 1.150
16 22 28 17.5 6.0 1.111
17 22 28 17.5 5.6 1.376
18 20 32 20 33 1.036
19 20 28 18 5.8 1.235
20 20 28 18 3.9 1235

material, whereas the distance between the first and the last on the road is less than 2 km. This allows
for focusing on the slope geometry.
From Tables IV and V, it is inferred that

* In the great majority of cases, the factor of safety derived from the proposed methoed lies below those
obtained by using the different MoS with deviations ranging from —3% (safe side) to 51% (unsafe side).
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Table IV. Comparison examples: Safety factors of slopes.

I I I v A% VI VI VIII IX X XI

Example  CFS CES Bish.  Janbu  Janbu CE CE M-P

# Ten.cr. Notec. OMS Simp. Simp. Corr. Spen. #1 #2 L-K Sine
1 4.052 4833 4.666 4523 5060 5260 5.134 6.021 6.101 4.973 5.062
2 2665 3111 2992 2925 3222 3340 3341 3304 3377 3.181 3.283
3 1.403 1.567 1513 1513 1.527 1.629 1.548 1.589 1616 1.552 1.540
4 2.039 2282 2232 2212 2296 2411 2457 2325 2379 2324 2.317
5 2720 2877 2828 2.896 2.819 2992 2895 2972 3.051 2966 2.892
6 2.879  3.185 3.147 3.146 3208 3.383 3.267 3.246 3367 3.215 3.266
7 3.527 3941 3907 3.894 4.000 4215 4.178 4111 4237 4.034 4.106
8 3700  4.143 4105 4.093 4209 4431 4401 4395 4514 4224 4.386
9 2265 2472 2441 2449 2471 2598 2471 2472 2591 2481 2.471
10 1.223 1.350 1308 1.315 1.321 1403 1336 1366 1.389 1.345 1.331
11 1392 1396 1362 1425 1352 1422 1422 1428 1433 1426 1.422
12 1417 1501 1466 1501 1467 1546 1500 1.526 1.558 1.527 1.498
13 1.362 1362 1360 1365 1.360 1379 1365 1.365 1365 1.365 1.365
14 1.949 2029 1982 2055 1.967 2.088 2.051 2091 2132 2,087 2.048
15 1.912  2.041 2.005 2.043 2012 2131 2.045 2.064 2156 2.088 2.042
16 2033 2171 2133 2175 2139 2268 2176 2178 2299 2.190 2.173
17 1.934 2105 2076 2.091 2101 2216 2100 2100 2216 2114 2.100
18 2.800 2987 2935 2993 2942 3.125 299 3.024 3.177 3.028 2.992
19 1.842 1977 1.945 1975 1957 2069 1970 1.970 2.084 1985 1.975
20 2349 2553 2519 2543 2547 2695 2547 2548 2711 2561 2.547

CFS =proposed closed-form solution; OMS: Ordinarry Method of Slices; Bish.=Bishop; Spen.=Spencer;

CE = Corps of Engineers; L-K = Lowe—Karafiath; and M—P = Morgenstern—Price.

Table V. Comparison examples: Deviation of safety factors of slopes. Dev (%) = (FS, FS;— 1)100, where
n=IL . .XI (number of column; see Table TV). FS; refers to the first column of Table IV,

I I III v v VI vii VIl IX X XI  Min Max
Example CFS CFS Bish. Janbu Janbu CE CE M-P
# tc. Notc. OMS Simp. Simp. Corr. Spen. #1 #2 L-K Sine

1 0 19 i) 12 25 30 27 49 51 23 25 12 51
2 0 17 12 10 21 25 25 24 27 19 23 10 27
3 0 12 8 8 9 16 10 13 15 11 10 g8 16
4 0 12 9 8 13 18 21 14 17 14 14 g8 21
5 0 6 4 6 4 10 6 9 12 9 6 4 12
6 0 L 9 9 11 18 13 13 17 12 13 9 18
7 0 12 11 10 13 20 18 17 20 14 16 10 20
8 0 12 11 11 14 20 19 19 22 14 19 11 22
9 0 9 8 8 9 15 9 9 14 10 9 8 15
10 0 10 7 8 8 15 9 12 14 10 9 7 15
11 0 0 -2 2 -3 2 2 3 3 2 2 =3 43
12 0 6 3 6 4 9 6 8 10 8 6 3 10
13 0 0 0 0 0 1 0 0 0 0 0 0 1
14 0 4 2 5 1 7 5 T 9 7 5 1 9
15 0 7 5 7 5 11 7 g8 13 9 7 5 13
16 0 7 5 7 5 12 7 T 8 7 5 13
17 0 9 7 8 9 15 9 5 15 9 9 7 15
18 0 7 5 7 5 12 7 g 13 8 7 5 13
19 0 7 6 7 6 12 7 7 13 8 7 6 13
20 0 9 7 8 8 15 8 8 15 9 8 7 15
min 0 0 -1 0 -3 1 0 0 0 0 0

max 0 19 15 12 25 30 27 49 sl 23 25

CFS =proposed closed-form solution; OMS: Ordinarry Method of Slices; Bish.=Bishop; Spen.=Spencer;

CE=Corps of Engineers; L-K =Lowe—Karafiath; and M—P = Morgenstern—Price.
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« The higher the factor of safety, the greater the deviation in safety factor,

e Comparing only the results obtained by using the different MoS (the proposed method has been
ignored here), it is noted that the deviations may also be quite high for the same example ranging,
generally, from —5% to 35%; Bishop’s simplified method was taken as point of origin. Having
as point of origin the Morgenstern—Price’s method the deviation ranges between —11% and
21%. The deviation from the unsafe side is too high and considering that these 20 examples
do not include water or other loadings, the existing methods raise serious queries about their
effectiveness.

 Allowing the formation of tension crack in all methods, the method that gives the most conserva-
tive safety factor values is the proposed one (Table IV, column I).

* In most of the cases, the different MoS resulted to slip surface without the formation of tension
crack. Using the proposed method, on the other hand, the minimum safety factor generally corre-
sponds to a failure surface with tension crack, although, in some cases the difference is only minor
as the tension crack appears very close to the entry point of slip circle.

* Among the various MoS, the Ordinary Method of Slices and Bishop’s method are the most
conservative.

* In the majority of cases, the Janbu (corrected) and the Corps of Engineers (CE #1 and CE #2)

methods are the least conservative. The two Corps of Engineers methods gave some of the safety

factors with the greatest deviation (see Table IV and V, first example) and indeed on the unsafe side.

Generally, it is observed that the shorter the slope and the higher the cohesion are, the greater the

deviation in safety factor is.

= A tension crack may reduce the safety factor of slopes by as much as 19% (and apparently more),
even if it is not filled with water.

* The influence on the safety factor of slopes depends on the soil and geometric characteristics
of slopes.

* In the existing limit equilibrium software, the location/depth of tension crack is either related to
the operator of the normal force at the slice base, which means that it is strongly influenced by
the assumptions made regarding the interslice forces, or it is defined in terms of Rankine’s active
earth pressure theory using Equation (12). The second approach not only refers exclusively to
homogenous slopes but moreover, it does not take into consideration the geometry of slope and
pore pressures. In the proposed method, the tension crack cuts the slope in the transition point
along the failure surface between tension and compression.

2 s ?
==~ tan (Z Ee %) (12)

6. SUMMARY AND CONCLUDING REMARKS

Over the last 80 years, a large number of LEM have been proposed for the stability analysis of earth
slopes against circular and non-circular failure based on MoS. The division of a slope into slices
however, renders the problem statically indeterminate, and assumptions are inevitably necessary
regarding interslice forces.

The proposed CFS treats the sliding mass as a rigid body, thus the problem becomes statically
determinate, and a solution can be found without needing to know the internal stress state within the
failure mass. The method can be applied to non-homogenous slopes with complex geometry
together with various kinds of external loading. The method is also able to determine the critical
location of tension crack by simply varying the entry point of the slip circle. The implementation of
the procedure is simple and can be carried out on commonly available spreadsheet software.
Comparison of the safety factors obtained by using the proposed method and the ones obtained by
using the traditional LEM, as applied to several test examples, indicates that the proposed method is
more conservative, whereas moreover, it gives a more realistic point of view for the formation of
tension crack in slopes. The last is, generally, a weak point of all the existing LEM.

Copyright © 2012 John Wiley & Sons, Ltd. iInt. J. Numer. Anal. Meth. Geomech. 2013; 37:1969-1986
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APPENDIX

In this Appendix, the magnitude and point of action of the resultant normal and driving force due
to the weight of the sliding mass is calculated by integrating along the slip surface. First, the
sliding mass is divided in the limit as the slice widths tend to zero resulting in an infinite number
of vertical slices. As the sliding mass is examined as a whole, the interslice forces (E; and X))
cancel out and therefore, for the sake of brevity, they are ignored. The weight of each slice W;
is broken into two components, one normal N, ; and one tangential F, ; to the base (Figure 9);
the integration along the slip surface of these forces will finally give the resultant normal and
driving force respectively. It should be emphasized that the force N, ; is not the normal reaction
at the base of the slice, the magnitude of which is affected by the interslice forces. As each one
of the N ; and F, ; forces has its own direction, it is necessary that both be analyzed into the
x — direction and y —direction; that is, (N, , N, ;) and (F, ; F), ;), respectively.

Therefore, the magnitude of the two components of the resultant normal force (Figure 10) are
as follows:

Figure 10. Resultant normal and driving forces and their points of action.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:1969-1986
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Ngy =+ [Nydy =+ [ N;sinwdy = A1)
=+ [ Wi(y) sin w; cos w;dy )
NR,}‘ = — fNy,idx =— IN,'COS CL),'dJC =

= — [ Wi(x) cos® wdx A2)

Similarly, the magnitude of the two components of the resultant driving force (Figure 10) are
the following:

Frxy=— [Fydy = — [Fgicos wydy =

= f Wi(y) sin w; cos w;dy (A.3)

FR_.y = — ny,,-dx = — de'f sin a);dx
= - IW,'(X) sinzw,-dx — (A4)
= — [Wi(x)(1 — cos?w;)dx

X=X Yo \/TZ—(}’o—)‘)z(}’o—y)

sinw; cosw; = = 7 (A.5)
r 12 r

where,

coslw; =1 — sinw;=1— (@)2 (A.6)
Wi(x) = 7. {fi(x) — feire(x)} (A7)
VVI(y) = ys{ﬁ(y) ﬁfcirc(y)} (A.8)

The operators in front of the integrals (Equations (A.1)-(A.4)) indicate the direction of force
according to the Cartesian coordinate system of Figure 9 (see also Figure 10). The limits of the
integrals in question are defined by the entry and exit points of the slip circle given by the points
A" and T, respectively.

The coordinates of the points of action of the resultant normal and driving force (Figure 10) are
as follows: '

_ S Noiydy [ Wi(y) sinw; coswiydy

= = A9
A JNedy [ Wi(y) sinw; cosaw;dy (A.9)
— [Nyxdx  [W; % w;xdx
gy = =L Mol _ [ Wi(x) cos” aopn (A.10)
— [Nygdx [ Wi(x) cos? w;dx
— [Feydy [ Wi(y) sinw; cosw;ydy
g = ' (A.11)
— [Fudy [ Wi(y) sinw; cosw;dy
— [ Fyixdx _ JWix)(1 - Coslz(uj)xd.x (A12)
— [Fydx [ Wi(x)(1 — cos?w;)dx
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It may be noted that as all components of the normal and driving forces given by Equations (A.1)-(A.4)
are generated by the gravitational weight of the sliding mass, which is obviously vertical, the following
equations must be satisfied:

Ngx+ Frz=0 (A.13)
Niy+ Fry =W (A.14)

Substituting Equations (A.1)-(A.4) into Equations (A.13) and (A.14), it can easily be shown that
both preconditions are true. Moreover, from Equations (A.9) and (A.11), it is observed that the points
of action of the resultant normal and driving force have the same y —coordinate, that is, yy=yr.

Finally, taking only into account, for the sake of brevity, the weighting force of the sliding mass
through the equations given in this Appendix (Equations (A.1)-(A.4)) and the buoyancy force U,
the safety factor expression of Equation (A.15) is obtained. For the cohesion and buoyancy force, as
well as for any possible external loading, it stands for what it has been written in the main text.

_ 1’ L+ 1y, (|Nry| sindy + |Fry| sindy) tan’-rU tang’

FS,
M rys(|NR,y|cosél + |Fry| cosdz)

(A.15)

It is noted that Equation (A.15) always gives exactly the same safety factor values as Equation (3).
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NOTATION

¢’ Cohesion with respect to effective stresses in kN/m?>

do Infinitesimal angle in radians

ds Infinitesimal length along the slip arc in meters

E; Interslice force acting parallel to x —axis in kN

E, and Ej, Vertical and horizontal compoenents of seismic force, respectively, in kN/m

FSy Safety factor of slope with respect to moment equilibrium

FSg Safety factor of slope with respect to force equilibrium

F. Force due to cohesion (resultant) in kIN/m

F, The tangential component of W on the slip surface

F, Friction force (resultant) in kN/m

By Friction force due to the pore pressure force U (F,=Utan ') in kN/m

Fy Footing force (concentrated loading) in kN/m

Fai The tangential component of W;

Fy;and F, ; The x —component and y — component of F; ;, respectively

Fryand Fg, The x —component and y — component of the resultant driving force of the sliding
mass, respectively

Jix) or fi(y) Mathematical functions representing the geometric elements of the problem (e.g.,
slope face and upslope area)

Jeine(X) OF feinc) The function of critical slip circle as for x and y

Ju(x) The distribution function of pore pressures along the slip circle

gi(x) Mathematical function representing the interface between two successive soil layers
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Slope height in meters

Pool height in meters

Height of lower layer in a two-layer system measured from slope toe in meters

Length of slip circle in meters

Sum of the resisting and driving moments respectively in kNm

The normal component of W on the slip surface

The normal component of W;

The x —component and y —component of N, ;, respectively

The x —component and y —component of the resultant normal force of the sliding
mass, respectively

The radius of the slip circle in meters

Slope gradient

Function representing the pore pressure distribution along the slip circle

Pore pressure force (resultant U= Zu) in kN/m

Force due to water in tension crack and poor surcharge, respectively (concentrated
loading) in kN/m

Weight of the sliding mass in kIN/m

Weight of slice in kN

Interslice force acting parallel to y —axis in kN

The x —coordinate and y —coordinate, respectively, of the center of the failure
mass in meters

The x and y coordinates, respectively of the center of mass of the area bounded
between the slip circle and the free water surface in meters

The x —coordinate of the resultant normal and driving force of the sliding mass,
respectively

The y —coordinate of the resultant normal and driving force of the sliding mass,
respectively

Angular position of the entry and exit point of slip circle with respect to the rotating
center O, in radians

Specific gravity of soil and water, respectively, in kN/m®

Angle of inclination of the line passing through the center of the circle O and the
point of projection of W on the slip surface

Angle of inclination of the line passing through the center of the circle O and the
point of projection of N ,, on the slip surface

Angle of inclination of the line passing through the center of the circle O and the
point of projection of Fg , on the slip surface

Total normal stress in kN/m*

Effective shear strength in kN/m?*

Friction angle of soil material with respect to effective shear stresses in degrees

Angle defined by the direction of Ny ; and the vertical
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