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SUMMARY

A closed-form stability analysis of earth slopes performed in 3D is proposed. The sliding surface is assumed
spherical and treated as a rigid body allowing the internal state of stress to be ignored. The proposed closed-
formed solution (CFS) can be applied to both homogenous and non-homogenous slopes of either simple or
complex geometry and can also deal with any kind of additional loading. Although it is recognized that the
critical failure surface is often non-spherical, the CFS methodology for spheres described herein provides an
objective tool for the evaluation of the assumptions made by other limit equilibrium methods including the
role of intercolumn forces. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Based on published works, it can be said that the decade of the 1960s was the most productive as
regards development of methods for the stability analysis of slopes in two dimensions. In the next
decade, interest in inventing new 2D methods or refining existing ones declined with a simultaneous
increase in interest in methods of stability analysis of slopes in 3D. Indeed from the mid 1970s until
today, a large number of 3D limit equilibrium methods have been proposed (e.g. [1-3] and [4]).
This growth of interest in 3D slope stability analysis is related to the falling costs and increased
computational power available through personal computers.

As regards limit equilibrium methods, in most cases, slices in 2D have been replaced by columns in
3D, which means that not only does the problem remain statically indeterminate, but additional
assumptions are needed regarding the third dimension. Although this paper focuses on 3D limit
equilibrium methods, it is recognized that other approaches are available for 3D slopes, including
extrapolation of 2D slope stability to 3D (e.g. [5]), limit analysis methods (e.g. [2, 6-9] and [10]),
and non-linear finite element methods (e.g. [11, 12] and [13]). Detailed reviews of existing limit
equilibrium methods performed in three dimensions have already been reported in numerous papers
and textbooks (e.g. [14, 15] and [16]), hence they will not be repeated here.

The proposed closed-form solution that follows is the 3D counterpart of the method presented in the
companion paper of Part I. Therefore, similar to the previous work, the whole slope mass over the slip
surface, which is considered spherical, is idealized as a single point, the center of mass (Figure 1). This
is feasible because spherical failure is displaced as a rigid body rotation; therefore, no assumptions are
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Figure 1. Example of a simple homogenous slope. The whole failure mass (gray area) is idealized as a single
point (point C; center of mass). Projection of weight W to the slip surface (point I).

necessary regarding the internal state stress within the soil mass. This is in contrast to non-spherical
failure surfaces, which can induce internal stresses within the sliding volume.

2. SCOPE OF THE PAPER

The authors recognize that the actual failure surface of slopes is not necessarily spherical. However, the
proposed 3D closed-form solution can be used as benchmark for the evaluation of existing 3D slope
stability methods and their assumptions. Moreover, it could be used as an objective tool for
the interpretation of the internal forces if, at a later stage, the sliding mass is divided into columns.
The interpretation of the internal state of stress of the sliding mass involves the determination of the
point and angle of action of intercolumn forces based on a parametric analysis of the factors that
may influence these magnitudes (e.g. shear strength characteristics of soils, gradient of column base
or top). Such a study may lead to the proposal of a new, more effective, 3D limit equilibrium
method for the stability of earth slopes applicable to any failure surface shape. The proposal of a
new 3D slope stability method based on the concept of columns as well as the study of intercolumn
forces are beyond the scope of the present paper.

3. DEFINITION OF SAFETY FACTOR

The factor of safety for slope stability analysis is usually defined as the ratio of the ultimate shear
strength divided by the mobilized shear stress at working stress levels, Although there are several
ways of formulating the factor of safety FS, for the special case of spherical failure studied herein,
the expression of safety factor in terms of moments is the most appropriate:

Resisting moments My
Driving moments M,

FSu = (D
where My is the sum of the resisting moments and M, is the sum of the driving moments.

The center of the sphere is taken as the moment point for convenience. The factor of safety is
assumed to be the same at all points along the slip surface, which is typical for the conventional
limit equilibrium methods (e.g. [15]). As shown below, the proposed methodology satisfies force
equilibrium as well.
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4. BACKGROUND TO THE PROPOSED METHOD

The methodology presented herein is based on the fact that, at the initiation of pure rotational slides
along a spherical surface, no shear forces are developed inside the failure mass. This allows for the
internal forces to be ignored and the mass over the slip surface to be idealized as a single point, the
center of (failure) mass (Figure 1). Similarly, other possible forces acting on the slope (e.g. pore
pressures, seismic, footing, water in tension crack etc) can be projected onto the failure surface
before calculating their moment about the center of rotation.

Adopting Coulomb’s equation and working in effective stresses (Equation 2) with the homogenous
slope in which only gravity and pore pressures act, the safety factor, FS3,, is given by Equation (3).
The radius r in Equation (3) cancels out, thus, the proposed methodology satisfies force equilibrium
as well. Detailed analysis of the forces included in the equation in question is given in the next
section. Moreover, examples of some of the most commonly used forces in slope stability analysis
are given in Section 6.

7= ¢ + (o-u)tang = ¢ + o tang -utang 2)

¢ Ager + W cos (g -5) tany r-$ u tany r

FS33 = T
W sin (E -(5) r

3)
cAg + Wcos (g -5) tang -U tang'

W sin (g -6)

= FSayr

5. FORCES ACTING ON THE SLIP SURFACE

5.1. Force F_ because of cohesion

The resisting force because of cohesion is derived from the product of cohesion, ¢’, by the area, A,,, of
slip surface:

F.=cAy )

Unfortunately, there is not a formula currently available that can give directly the surface area of a
sphere between two or more non-parallel planes that intersect the sphere; planes representing the slope
face, the upslope area of the slope and in case of deep seated failures, the downslope area). However,
the area in question can be calculated indirectly but without sacrificing accuracy following Archimedes
of Syracuse (287-212 BC). The well-known formula for the surface area of sphere (Asp,,=4nr2) was
first derived by Archimedes based upon the fact that the projection of a sphere onto a circumscribing
cylinder is area preserving. The method is simple and has been widely used since 1772 in cartography
(cylindrical equal-area projection).

The procedure for calculating the area of the required spherical surface is described below:

* Definition of planes and intersection points: The upslope area is represented by a plane passing
through the points A and A’ (Plane I), whereas the slope face is represented by a plane passing
through the points T and A (Plane II). Both planes are assumed to be parallel to the z—axis,
although as shown later, this is not a restriction. Plane I, Plane II and the sphere have two points
in common, namely, M and N; see Figure 1.

* Area Ay of slip surface: The area in question arises indirectly from its radial projection to an
imaginary cylinder that circumscribes the sphere; the axis of the cylinder is considered parallel
to the z —axis (Figure 2). The projected area is equal to the original area on the sphere. The radial
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Figure 2. Sphere of diameter D= 2r with a circumscribing cylinder of height H,,,=2r. Example: projection
of point Q onto a z — x plane.
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Figure 3. 3D drawing: Internal view of failure surface. Projection diagram: projection of failure surface onto
a z —x plane (semi-diagram, symmetry as for the x-axis).

projection is done in a vertical' manner, whereas as the diameter of the sphere is equal to the
height of the cylinder, all points preserve their original z —coordinate. The cylinder is then ‘unrolled’
and the result is a z — x diagram similar to the example given in Figure 3. In essence, only the points
of intersection between the slip surface and the slope profile are projected. These points can easily be
represented by mathematical (e.g. polynomial) functions. The area A, finally, derives from the
subtraction of the integrals of the upper and lower function (Figure 3, Equation 5). The authors
propose in the Appendix an analytical formula for the exact calculation of the area in question.
The formula stands for symmetrical failures as for the x-y plane (z=0) passing through the toe of
the slope whilst, moreover, as regards to the geometry of the problem it stands that, the upslope area
is horizontal, the point of origin is the toe of slope for z=0, the slope face is represented by a plane
parallel to the z-axis and the slope is above the negative part of x-axis (see Figure 1). For other cases
the formula must be modified as needed.

Agg = 2/ 1£i(z) — fa(2)}dz )

Heterogeneity: If the slip surface meets soil layers with different cohesions (Figure 4), Eq. (4) is mod-
ified accordingly, and the procedure is analogous to the one presented above; division of slip surface
into parts and direct projection of each one of them to the circumscribing cylinder is necessary.

"For better interpretation, readers may imagine a lamp moving along a horizontal axis that passes through the center of the
sphere; this is also the axis of the circumscribing cylinder. The beam produced by the lamp shines only perpendicularly to the
z-axis, around of which, the lamp is free to rotate. The shade of every surface point of sphere onto the cylinder is a projected
point.
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Figure 4. Example of a heterogeneous slope with complex geometry. The sliding mass is divided by the
interlayer plane (g,)and vertical planes passing through points x, to xg into six (homogenous) parts, whereas
the free ground surface consists of four parts (functions f; to fy). The failure surface crosses two soil layers.

Upslope area: The upslope area can be any plane (horizontal or inclined) or even a curved surface. This
area is represented by mathematical function(s), and the intersection points with the sphere are determined.

5.2. Friction and driving force, F,, and F4 , respectively

In this case, the weight, W, of the whole failure mass, as well as, the x —coordinate of its center of mass,
Xc, must be known. The weight in question corresponds to the volume of the slope mass enclosed
between the failure surface and the free ground surface (Figure 1, gray area). The method can be used in
homogenous and non-homogenous slopes and in either simple or complex geometries (see Figures 1 and 4)
following the steps below:

i. The free ground surface is divided into n parts, such that each one of them can be represented by
a (simple) functiony=f(x), i=1,2,...n (y=f{x, ) if the plane is not parallel to the z —axis).

ii. If there are m+1 soil layers of different unit weights and shear strength characteristics, each
layer is separated by a line represented by a function (or a number of successive functions)
y=gix), i=1,2,...m(y=g,(x,z) if the plane is not parallel to the 7 —axis).

iii. The failure mass is then divided into g parts, each one of them homogenous encompassed by an
upper and a lower function (f(x) and g,(x) or f;(x) and Jipr(x) or g(x) and Sopn(x)) and two x values
as boundaries and finally,

iv. The gravity force, W, and the x —coordinate of the center of the mass, x¢, are given by Equations
(6a) and (7), respectively. The equations shown below refer to the specific homogenous slope
shown in Figure 1. For other cases, they should be modified as needed.

W= W{ -+ WZ (68.)

T J 72={fas (x)-yo )= (-3

W = 9 [ @) o (x, 2)] e =
i =y P {faar ()30} = (xmx,) 6b)
= waa (z, x)dzdx
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where for the slope of Figure 1 is fa4-(x)=H and fy7{x) = — tan fx. The limits of the internal integrals
derive from the equation of the sphere solved as for z and placing where y the equation that represents
the slope profile, in this respect y = f, 4+ (x) for the area to the upslope of the slope and for the slope
face. In essence, these limits correspond to z —coordinate of the points of intersection between the slip
surface and the slope profile for x4 <x <x,-.

The procedure continues with the vertical projection of the force W onto the failure surface, where it
is broken into tangential (F,;) normal (N,;) components. The first one is the driving force because of
gravity (see Equation 3), whereas the second one is multiplied by the friction coefficient,tan¢p’, to
give the total friction force Fthat corresponds to the product otany 'from Eq. (2), hence:

Fyq= Wsin("/3-8) (8)

F, =N tang = W cos(*/,-0) tang ©)

where from Figure 1(a), d=tan ~ '(yp/xp).

The above procedure involves a major assumption regarding the point of action of F; and N,,,which
is considered to be the point of action of W on the slip surface. Following a procedure similar to the one
given in the Appendix of Part I, it can be shown that the assumption made herein is also not true. As in
the 2D case, the resultant normal and driving force, as well as the point of action of these forces can be
obtained by integrating along the spherical slip surface. The procedure in question which requires
division of the sliding mass into columns, is presented in the Appendix at the end of the paper.
Generally, it can be said that both the rigorous approach presented in the Appendix and the
simplified one result to the same safety factor values. Thus, the two components of W on the slip
surface (F; and N,;) can be considered representative of the resultant normal and driving force of the
failure mass.

Heterogeneity: If the slip circle meets k soil layers with different friction angles ', then k driving and
friction forces must be calculated. Each pair of forces corresponds to the mass above the part/area of
the slip surface that has the same ¢'. For example, in the two-layer system of Figure 4, one pair of
forces should be calculated for x; to x, and one for the rest going from x; to x,.

It is apparent that in case of heterogeneous slopes, the sliding mass is divided into parts (e.g. two parts
for a two-layer system, three parts for a three-layer system, etc). Although, the present CFS ignores the
inter-part forces, it is believed that as the number of interfaces created in the analysis is small, the error
in the resulting safety factor value is minor. It may be noted that in the case of various methods of
columns where the number of columns is very small, the main source of error is because of the fact that
the failure surface is represented by a coarse polygonal surface, something that is avoided by the
present method where the spherical surface is strictly retained. On the other hand, if the number of
columns in a method of columns is great enough for the failure surface to be closely represented by a
smooth polygonal surface, the error in the safety factor value is mainly because of the assumptions
made for the intercolumn forces. Comparison studies have already shown that the different methods of
columns give usually similar results (e.g. see [1, 17]).

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2013; 37:1987-2004
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Center of mass: If the problem is not fully symmetrical (geometry and layering) as for the plane x — y,
in addition to x¢ (Equation 7), the z¢ coordinate must be calculated whilst the angle § must be modified
accordingly.

Surfaces non-parallel to the z-axis: The proposed closed-form solution can also deal with surfaces not
parallel to the z —axis (e.g. fi(x, 2)). In this case, Equations (6a)—(6c) should be modified accordingly,
and because of the absence of symmetry, the z¢ coordinate of the center of the mass must also be
known for the calculation of the angle & (see Equations 8 and 9). The angle J refers to the acute angle
between the vertical line passing through the center of the sphere and the line that connects the last with
the point of projection of the center of the mass on the slip surface.

5.3. Pore pressure force F\,

The pore pressure distribution is shown in Figure 5 denoted as function u(x, z). The resultant pore
pressure force U can be calculated according to Equation (10), as the area bounded between this
surface and the spherical failure surface. However, as y,, is constant, it is more convenient for U to
be calculated directly from the area between the free water surface and the slip surface, where all
functions are already known according to Equations (11a)-(11c).

2(x) z(x)
f f (e, 2)dedt = f f {nfur () Dfipn(x,2) Y dadx (10)
—2z(x) Xy —z{x)

where, z(x \/r — By =y = (Y

U=U + U, (11a)

‘\/ {fﬂg J’n (J(' xn {f )f ( }}d dx
Tw x sphiX, Z 20X =
oy O an

= ﬂﬁ,] (x, z)dzdx

VP ={ar (x)-yo}? (x o)
U,= s dzdx =
I f\/r 2= or ) -0} - Zy“’{ﬁ”(x Sl (11c)

= [[fua(x, 2)dzdx

Figure 5. Example: water table in slope and pore pressure distribution along the failure surface (function u(x, y, 2)).
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The buoyancy force U, which acts radially on the slip surface, is multiplied directly by the friction
coefficient tany’giving the force F, that corresponds to the negative term utan ¢’ in Coulomb’s
equation (Equation 2), that is:

F, = Utang (12)

For information purposes, it is noted that U acts at the intersection point between the radius passing
through the centroid C” of the area bounded between the free water surface and the slip surface. If the
problem is fully symmetrical as for the x —y plane it stands that zo = 0. Otherwise, the three
coordinates are as follows:

iy = Dt (x, 2)dedx + lIxfa(x, 2)dzdx

- (13a)
v = D (0 2)dedy ;; Ifia (v, 2)dzdy (13b)
2o = .I-J-qul (Z,X)dxdz + Hgﬁa(z,x)dxdz (138)

U

6. EXTERNAL FORCES ACTING ON THE SLOPE

The methodology described is easily generalized to include other types of external forces commonly
encountered in slope stability analysis. Some of these load cases are shown in Figure 6 and include
water-filled tension cracks, pseudo-static earthquake loading (horizontal and vertical components),
footing loading on the crest of the slope or elsewhere and pool loading because of free-standing
water adjacent to the slope. As a general rule, additional forces of this type are projected onto the
slip surface and broken into normal and tangential components. Each normal component is
multiplied by both the coefficient of friction tany 'and the slip circle radius » and then added to the
numerator of the safety factor equation (Equation 3). The tangential component is multiplied only
by the radius r before it is added to the denominator of the safety factor equation.
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Figure 6. Example: possible external forces acting on a homogenous earth slope (see Figures 1 and 5 for
more details about gravity force and pore pressures).
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Some additional comments are given below:

* Heterogeneity: If the slip circle meets various soil layers of different friction angle, ¢, then the
normal component of each weighing force W; is multiplied by the respective coefficient of
friction, tan ¢;'(Figure 7a). The same goes for the pore water pressures, where the distribution
function u(x,y, z) is divided in a manner similar to the one applied to W; (division with vertical
planes) with each part multiplied by the respective coefficient of friction.

Seismic force: Pseudo-static seismic forces act at the center of the (sliding) mass and can be applied
directly in homogenous earth slopes as shown in Figure 6. An additional step is needed if the slip
surface crosses more than one layers (e.g. see Figure 8) in which case the failure mass should be
divided into horizontal and/or vertical lines as needed, passing through the points on the slip surface
where ¢’ changes. For every sub-area that arises from the division, both the magnitude of the
earthquake forces and the coordinates of the centers of mass must be calculated. Following this, each
gravity force is then multiplied by the required seismic coefficient. Finally, the forces are projected
onto the slip surface and broken into normal and tangential component as described previously.
Pool loading: This distribution is triangular following the pattern shown in Figures 6 and 9. Assuming
that the problem is symmetrical, the resultant force V,,, which is given by Equation (14), acts perpen-
dicular to the slope face at one third of the vertical height of the water (H,,) above the slope toe.

1
V}, = ‘Z'TWHWAP (14)
(a) (b) Distributed load
. A 4 * 5
\ \
\ \
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Figure 7. Non-homogeneous slopes: (a) vertical division of sliding mass and (b) division of a distributed
load for changing ¢’ values on the slip surface.

a) Horizontal seismic action b) Vertical seismic action

Figure 8. Horizontal and vertical seismic forces in two-layer slope system.
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Figure 9. Pool loading: triangular distribution of water pressure on the slope face along the z -axis.
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The contact area A, between the water and the slope face inside the limits of the failure surface can be
calculated according to the methodology shown in the Appendix at the end of the paper and Figure 10.

 Distributed loadings in non-homogenous slopes: If the projection of a distributed load such as a
footing or a pool loading, meets more than one layer on the slip surface, that is, more than one
¢’ values, then the distributed loading should be divided into parts (e.g. see Figure 7b). The
resultant force of each one of them should be projected onto an arc of the slip surface having a
uniform ¢’ value along its length.

» Tension crack: It is suggested that the tension crack be taken into account as part of the curved
surface of a cylinder having axis parallel to the y —axis. Moreover, as it is at user’s discretion
to choose the location of the point of origin of axes, it is more convenient the z —coordinate of
the center of the slip surface to be chosen equal to zero (zo=0). Thus, the center of the base of
the cylinder lies also on the x —axis. Moreover, it is assumed that the arc of the cylindrical surface
passes through the (x, z) — coordinates of the intersecting points of the sphere, the slope face and
the slope crest (points M and N, Figure 11). Therefore in essence, as the curved surface of the cyl-
inder passes through pre-fixed points, the tension crack is defined only by the x —coordinate of the
base of the cylinder. The computation procedure involves summation and subtraction of volumes.

= Water in tension crack: This distribution is triangular as shown in Figure 6, and the resultant force
V acts perpendicularly to the tension crack wall at one third of the height of the water. Similar to
the case of pool loading, the contact area between water and tension crack must also be known for
the calculation of the resultant force V. As the functions representing the contact area of water with
the tension crack are known, the area in question derives from the subtraction of the integrals of
these two functions; the function of the lower curve represent, in essence, the intersection points
between the sphere and the cylinder. The reasonable assumption that V acts at the axis of
symmetry of the problem (if it is symmetrical) can be made. As the force V cannot directly be
projected onto the failure surface (but gives moment about the center of rotation), it is broken into
two components, a radial and a second one, which is perpendicular to the radial component
(V. and V,, respectively). The first one gives neither moment (as for the center of rotation, O)
nor friction force; thus, it can be ignored. The second one is projected onto to the failure surface,
where it is broken into tangential and normal component (V. , and V.. ,,, respectively, see Figure 6).
It is noted that the force V,, , produces equal moment as for the point O comparing to the respective
one of its mother force, V, that is, Vy, =V (OIl)=V, . (see Figure 6). Moreover, as shown in
Figure 6, the force V contributes to the friction along the slip surface through the normal
component V. ,,; however, this contribution is rather minor.

Pool level

Note:
Half shape — Symmetry as for the x-v
plane passing through the points A', A, Band T

Figure 10. Cylindrical surface considered as the surface of the tension crack.
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Figure 11. Projection of the contact area between the slope face (inside the limits of the failure surface) and
the water because of pool loading on a z —y plane.

7. EXAMPLES

A comparison study is presented relating to the slope shown in Figure 12, which has a dimensionless
cohesion strength ratio ¢//yH=0.116, friction angle ¢'=15" and inclination angle 60°. The slope is
assumed to have infinite length (in z —direction) and is solved by several different methods.

As shown in Table I, the safety factor obtained by the proposed 3D-CFS is comparable to that given
by the rigorous version of the method proposed by Huang et al. [1] with a difference of about 1.5%. On
the other hand, the simplified version of the method proposed by Huang et al. [1] gives a safety factor
value 4.8% lower. Both the rigorous and simplified versions use spherical failure surfaces, and thus, a
direct comparison with the proposed 3D-CFS is possible.

Michalowski’s charts [6] give safety factor values ranging from 0.996 to 1.340 as a function of the
ratio B/H, emphasizing the role of the third dimension on stability. For the same B/H =2.55 ratio, the
proposed 3D-CFS method gave FS=1.258 compared with FS=1.092 from Michalowski’s charts
(15% deviation). A direct comparison with Michalowski cannot be made because that investigator
used hom-like failure surfaces as opposed to spherical surfaces by the proposed 3D-CFS. It is
accepted, however, that Michalowski’s solution is more realistic because it is well known that
spherical surfaces, generally, overestimate the factor of safety for frictional soils.

For the same reason as above, a direct comparison between the proposed 3D-CFS and the log-spiral
method by Leshchinsky et al. [18] is not possible. It is perhaps surprising though that the method by
Leshchinsky et al. [18] gave a higher factor of safety than that delivered by the proposed 3D-CFS
using a spherical surface.

Figure 12. Example: geometry of slope and width of failure.
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Table I. Comparison example.

Method Surface FS§

Leshchinsky et al. (1985) 3D Formed by log-spirals 1.25

Hungr et al. (1989) 3D Ellipsoid 1.23
(2D) (Not specified) (1.00)

Huang et al. (2002) 3D/Simplified Spherical 1.20

3D/Rigorous Spherical 1.24

Michalowski (2010) 3D Horn-like (B/H=1) 1.340
3D Horn-like (B/H=2) 1.136

3D Hom-like (B/H =2.53) 1.092

D Horn-like (B/H=3) 1.077

3D Horn-like (B/H=5) 1.040
2D) (Log-spiral) (0.996)

Proposed CFS 3D Spherical (B/H=2.55) 1.258
(2D) (Circular) (1.004)

Note: B = width of failure calculated by the maximum z —coordinate on the failure surface (B=2z,,y) and H =
height of the slope.

Hungr et al. [17] gave F5=1.23 for the same slope, but only for a specific failure width-to-length
ratio. Because this value does not necessarily correspond to the minimum safety factor for this
slope, direct comparison is difficult.

The validity of the assumptions made by any 3D slope stability method, including those proposed
by Michalowski, Leshchinsky et al. and Hungr et al., can be assessed by comparison with the
proposed 3D-CFS. Direct comparison is only possible, however, after applying these assumptions to
spherical failure surfaces.

Finally, it is noted that the safety factor of the slope in 2D as given by Hungr er al. [17],
Michalowski [6] and the proposed 2D-CFS (see Part I for more details about this method) are the
same and equal to the unity (Table I).

In addition to the above, two more examples are given in Table II. The two slopes in question have
been solved using the proposed 3D-CFS and Michalowski’s (2010) charts. As mentioned previously, a
direct comparison between the two methods is not possible because of differences in shape of the
failure surfaces. However, it can be noted that, although the results are in generally close agreement,
the Michalowski results lead to lower values. The horn-like surfaces used by Michalowski were
produced by two log-spirals. From 2D analyses, it is known that log-spiral surfaces in frictional
soils typically give lower safety factor values compared to the safety factor values obtained by
purely circular slip surfaces.

8. CONCLUDING REMARKS

Over the last 40 years, numerous limit equilibdium methods have been proposed for the stability
analysis of earth slopes in three dimensions. The majority of them are based on the concept of
columns as opposed to slices used in two-dimensional analyses. The division of a slope into
columns, however, renders the problem statically indeterminate, and assumptions are inevitably
necessary regarding intercolumn forces. Other methods are based on two-dimensional slope stability

Table I1. Examples: Slopes solved by the proposed 3D-CFS and Michalowski’s (2010) charts.

# of example H(m) B ¢’ (kPa) @’ () 7 (KN/m?) 2 FS34 FSptich.
1 10 60 20 25.00 20 2.20 1.376 1.251
5 15 75 30 29.05 18 3.44 1.264 1.110

Table note: The safety factor values of the last column (FSyg.n) have been obtained by Michalowski’s charts
(2010) for the same B/H value.
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analyses to estimate three-dimensional stability, whereas more recent approaches to 3D slope stability
analysis have included limit analysis and, most recently, finite element methods.

The proposed closed-form solution (CFS) treats the whole sliding mass as a rigid body; thus, the
problem becomes statically determinate, and a solution can be found without needing to know the
internal state of stress within the failure mass. The CFS method can be applied to non-homogenous
slopes with complex geometry together with any kind of external loading. The method is also able
to determine the critical location of a tension crack, the shape of which has been assumed to form
part of the curved surface of a cylinder. Although it is recognized that the critical failure surface is
often non-spherical, the CFS methodology for spheres described herein provides an objective tool
for the evaluation of the assumptions made by other limit equilibrium methods including the role of
intercolumn forces.

APPENDIX

ANALYTICAL FORMULA FOR THE EXACT CALCULATION OF THE AREA OF THE SLIP

SURFACE Ags.
As=2[  {Hi(0)-fl2)}d (A1)
0
fi(z) = < arcsin W — arcsin (%) r (A.2)
hHlz) = {arc sin(w) — arcsin (x_:) }r (A.3)

where,

|z(x,, Yo tanf)+1/ 4(xs —y, tanf)*—4(1+ tan?B) (2452 21
| 214 1an?f)

Jr_z2

+x,

W= (A4

As mentioned in the text, Eq. (A.1) stands only for symmetrical failures passing through the toe of
the slope. Moreover, the point of origin is considered to be the toe of slope for z=0, the upslope area is
horizontal (y= H), the slope face is represented by a plane parallel to the z —axis and above the negative
part of x —axis (y= — xtan f§); see Figure 1. Thus, for toe failures it stands that x,, > 0. For other cases it
must be modified as needed.

CALCULATION OF THE MAGNITUDE AND POINT OF ACTION OF THE RESULTANT
NORMAL AND DRIVING FORCE DUE TO THE WEIGHT OF THE SLIDING MASS

The magnitude and point of action of the resultant normal and driving force due to the weight of the
sliding mass are calculated by integrating along the slip surface. First, the sliding mass is divided in
the limit as the column widths tend to zero resulting in an infinite number of vertical columns. As
the sliding mass is examined as a whole, the intercolumn forces cancel out and therefore, for the sake
of brevity, they are ignored. The weight W;; of each column (i column in the x —direction and i" col-
umn in the z —direction; see Figure 13) is broken into two components, one normal N, . and one tan-
gential F;; to the base (both parallel to the x — yplane); integration along the slip surface of these
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Figure 13. The sliding mass divided into an infinite number of vertical columns.

forces will finally give the resultant normal and driving force respectively (see also the Appendix of
Part T [19]). It should be emphasized that the force N, ; is not the normal reaction at the base of the
slice, the magnitude of which is affected by the intercolumn forces. As each one of the N, ; and
F,;; forces has its own direction, it is necessary that both be analyzed into the x —and y —directions,
that is, (N, Ny, ;) and (F 4, F), ;) respectively (N, ;=0 and F, ;=0).

Therefore, the magnitude of the three components of the resultant normal force are (Figure 14):

Ngx =+ [ [ Nyydydz = + [ [ Ny sinwydydz =

=+ [ [ Wy(y,2) sinw; coswydydz (A.5)

NR,y = — IJ'N},,gdxdz = - ffNij COSU}U‘dXdZ e -
= — [ [ Wy(x, 2) cos*wydxdz ;

Nez =0 (A7)

Where, w; is the angle between the vertical line passing through the point (x,,,,z;) and the point of
action of the weight W;; (center of mass of column i — j); see Figure 13.

71 INgl-1Fg =0

YN=DXF

Figure 14. Resultant normal and driving force and their points of action (symmetrical failure).
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Similarly, the magnitude of the three components of the resultant driving force are (Figure 14):

Fry=— [ [Fyydydz = — [ [ Fy;coswdydz =

= — [ [ W;(y, z) sinw;; cosw;dydz {:8)
Fry= f [ Fyydxdz = — [ [ Fy; sinwdxdz
= ffW,j(x z) sin w,jdxdz = (A.9)
=— [ [Wy(x,2)(1 — cos’wy)dxdz
Fe, =0 (A.10)
where,
iy Wy = ==y -2y, -
sinw,rjcosa),-j:x rxa-yor y=\/ = 2 _)’or J (A.11)
—x2
cos?wy = 1 — sin*wy; = 1 — (x xo) =
2 2_ DV L2 (A.12)
i e M- (y — ) +z
— 1 —_ 5 = 3
¥ r
M'j(-x: Z) = s {fupper (x; Z) "prh(xy Z)} (A.13)
Wii(y,2) = V5 {fupper (9, 2) — fipn (3, 2) } (A.14)

The operators in front of the integrals [Egs. (A.5), (A.6), (A.8) and (A.9)] indicate the direction of
force according to a Cartesian coordinate system where the point of origin is the slope toe for z=0 and
the slope profile is drawn over the positive part of the x —axis. The limits of the integrals in question are
defined by the entry and exit point of the slip surface given by the points A" and T respectively as well
as by its lateral limits in third dimension (points M and N); see Figure 1.

The coordinates of the points of action of the resultant normal and driving force are:

J [ Negydydz [ [ Wy(y, z) sinwy coswyydydz

= = . A.l5
e [ [ Nyydydz [ [ Wi(y,2) sinw; coswydydz ( )
— [ [ Nyixdxdz _ [ [ Wy(x,z) cos®wyxdxdz
- (A.16)
— [ [ Nygdxdz [ [ Wy(x,z) cos?w;dxdz
v =0 (A.17)
[ J Freiydydz [ | Wy(y,z) sinw;j cosw;ydydz A18)
— [ [Fegdydz [ [ Wy(y, z) sinwy coswydydz '
ﬁffF dexdz I [ Wy(x,z ( — cos’wy;) xdxdz (A.19
X .
— [ [Fygaxdz [ [Wy(x,z)(1 - cos?w;;) dxdz )
zr =0 (A.20)
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It may be noted that as all components of the normal and driving forces given by Egs. (A.5)-( A.10)
are generated by the gravitational weight of the sliding mass which is obviously vertical, the following
equations must be satisfied:

Npx+ Fry=0 (A.21)
Neyt Fry=W (A22)
Ng:+Fr.=0 (A.23)

Substituting Eqgs. (A.5)-( A.10} into Egs. (A.21), (A.22) and (A.23) it can easily be shown that both
preconditions are true. Moreover, from Egs. (A.15) and (A.18) it is observed that the points of action of
the resultant normal and driving force have the same y —coordinate, that is, yy=yp.

Finally, from the above and taking into account the buoyancy force U, the safety factor expression
of Eq. (A.24) is obtained. For the cohesion and buoyancy force as well as for any possible external
loading it stands what it has been written in the main text. Eq. (A.24) is the rigorous expression of
safety factor which gives exactly the same result with the simplified one [Eq. (3)].

re’Ag + r(‘NR,y‘ sind; + ‘FR,yl sinég) tany’-rl tany’

FSu = r(|Ngy| cosé; + |Fry| cosd,)

(A.24)

CALCULATION OF THE AREA Ap

* Let the function of the slope face, which is assumed parallel to the z—axis, be y=f(x) or
expressed as for y, x=f(y).

* Substituting x=f,(y) in the equation of sphere f,4(x, y,z), the points of intersection between the
sphere and the slope face are given by Eq. (A.25). In essence, the total of these points along with
the lines y=0 and y=H,, form an area, which is the projection of the area A, on a y — z plane
(Fig. 10).

(0) = %)+ =¥ +2 =P >y =£(2) (A.25)

* The projection of the area A, on the plane y — z has area equal to:

2
Ay =2 (lew + f (Hyw — [f(z)])dz) (A.25)
21
where, z; and z, are the integration limits, which can be found by substituting y=0 and y=H,, respec-
tively into Eq. (A.25) and solving as for z; z; =0 for toe failures.

* Finally, the inclined area A, is equal to:

Ay, =% /sinf (A.27)
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NOTATION

Ap Contact area between the water (pool loading) and the slope face inside the
limits of the failure surface in m

Ay Projection of area A, in a z —y plane in m*

e Area of the slip surface in m*

B Width of failure (in z —direction) measured on the slope face in m

d Cohesion with respect to effective stresses in kN/m?

E, and E, Vertical and horizontal component of seismic force respectively in kN

F, Force due to cohesion (resultant) in kN

P Friction force (resultant) in kN

F, Friction force caused by the pore pressure force U(F,= Utan ¢') in kN

Fy Footing force (concentrated loading) in kN

[fix) or fi(y) Mathematical functions representing the geometric elements of the problem
(e.g. slope face, upslope area)

Jefx) or f() Mathematical functions representing the slope face (see Appendix)

ool ¥, 2) Equation of sphere (x — x,)*+(y — y,)° + 22 = r*

FSy Safety factor with respect of moments used in definition

FS3a Safety factor with respect of moments referring to three dimensions

FSsq r Safety factor with respect of forces referring to three dimensions

gix) Mathematical function representing the interface between two successive soil layers

H Slope height in meters

H, Pool height in meters

Py, i Height water measured vertically from the slip surface in a given position i in meters

My and M, Sum of the resisting and driving moments respectively in kNm

r The radius of the slip surface in meters, which is considered spherical

tan f§ Slope gradient

u(x,y, ) Function representing the pore pressure distribution along the slip surface

U Pore pressure force (resultant; U= Xu) in kN

v The resultant force due to water in tension crack in kN

V,.and V, The radial and perpendicular to the radial component of force V in kN

Vp The resultant force due to pool surcharge acting on the failure surface in kN

w Weight of the sliding mass in kN

x, and y, The x and y —coordinate, respectively, of the center of the slip sphere in meters
(z,=0).

Xew Yo and z¢o The x, y and z — coordinate, respectively, of the center of the failure mass in meters

X and yp~ The x and ycoordinate, respectively, of the center of mass of the area bounded
between the slip surface and the free water surface in meters

ys and 7, Specific gravity of soil and water, respectively, in kN/m>

o Total normal stress in kN/m?

T Effective shear strength in kIN/m?

¢ Friction angle of soil material with respect to effective shear stresses in degrees

Subscripts n and ¢ Subscripts under force notation indicate normal and tangential component,
respectively
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