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An analytical solution for calculating the probability of failure of rock slopes against planar sliding is
proposed. The method in based on the theory of random fields accounting for the influence of spatial
variability on slope reliability. In this framework, both the cohesion and friction coefficient along a
discontinuity are treated as Gaussian random fields which are fully described by their mean values
(Hc: M ian o) Standard deviations (¢, 6'an ). Spatial correlation lengths (6, 0 tan »),» and the parameters
(Pe— tan g Be— tan o) Which account for the cross-correlation between cohesion and coefficient of friction.
As shown by the examples presented herein, the spatial correlation of shear strength can have an
important influence on slope performance expressed by the probability of failure. This is a significant
observation, since ignoring the influence of spatial correlation in design may lead to unconservative
estimations of slope reliability.
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1. Imtroduction

Geotechnical engineering is the branch in civil engineering
most dominated by uncertainties, as it typically deals with highly
variable natural materials. The uncertainties in rock properties
arise from three main sources, namely, inherent variability, statis-
tical uncertainty and systematic uncertainties, The inherent varia-
bility results from the fact that, even in a homogeneous rock
medium the rock properties exhibit variability by nature. Due to
limited field sampling and laboratory testing, the statistics (such
as, mean and standard deviation) of a rock property will be subject
to (statistical) uncertainty. This type of uncertainty decreases with
increasing number of samples. Discrepancies between the labora-
tory and in situ conditions, due to factors such as scale, anisotropy
and water saturation are related to systematic uncertainties [1].
The present paper focuses on the inherent variability (which can
be relatively large even within so-called homogeneous materials)
and its influence on the failure probability. The inherent variability
is treated as an aggregate property. The various components of
variability, such as material inhomogeneity and discontinuity
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roughness, and the associated different scales are represented by
a single length scale for each random field in the problem.

In common practice, deterministic design methods, as required
by design codes, attempt to account for uncertainties related to
rock mass by adopting conservative values for the various para-
meters and relatively large safety factors. Traditional approaches
to the longstanding geotechnical problem of rock slope stability
generally involve assuming that the rock properties are spatially
constant. Common denominator of all these approaches is that the
outputs (safety factor values) are based on representative discon-
tinuity property values. However, in highly variable materials, the
deviation in property values is not just a statistical number that
can simply be ignored, but a parameter that gives important
information regarding the performance of structures. The last
can easily be confirmed by calculating the failure probability of a
given slope (geometry, loading conditions and mean shear
strength values) for different standard deviation values of material
properties [,

Slope stability analysis has probably received more attention
from a probabilistic viewpoint than any other branch of geotechni-
cal engineering, The earliest papers regarding rock slopes appeared
in the late 1970s and 1980s [4-9] and have continued steadily | 10~
21]. Although the geotechnical profession has been quite slow to
adopt probabilistic approaches to geotechnical design, especially in
traditional areas such as slopes and foundations {7}, an increase in
their use has been visible in recent years. Evidence of this is the fact
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that several widely used proprietary slope stability codes (such as
SWEDGE, ROCKPLANE, SLIDE, SLOPE/W) now include a probabilistic
option, and there has been a growth in the availability of shart
courses on the subject for practitioners and specialty conferences.
These software packages employ Monte Carlo simulations to
repeatedly calculate the factor of safety with input parameters that
are randomly generated according to user-defined probability
distributions. The probability of failure is, then, defined as the
number of Monte Carlo trials producing a factor of safety less than
one divided by the total number of trials

In this paper, an analytical solution for the stability assessment
of rock -slopes from the probabilistic point of view is proposed. The
planar mode of failure is considered. Key element of the solution in
question is that it is based on the theory of Random Fields taking
into account the influence of spatial variability on slope reliability.
Carefully planned and executed core drilling followed by detailed
core analysis tests can improve the quantitative description of
discontinuities (including its spatial variability) carried out using a
rock exposure survey {.!i. The concept of Random Fields has
already been applied to various geotechnical engineering problems
(e.g. including stability of soil slopes, spread foundations, pile
foundation, retaining walls) as part of a finite element approach,
best known as the Random Finite Element Method (RFEM) [}
However, to the best knowledge of the authors, the present work
constitutes the first analytical approach of random fields in geo-
technical engineering. The numerical counterpart of this work,
based on the Local Average Subdivision method | ! for the
simulation of the random fields, can be found in |

2. The proposed analytical solution

Assuming that the rock block may slide along a planar dis-
continuity (plane AB in 1), the following two cases are
described. In the first and simpler case, only friction is treated as
random field. In the second case, as discontinuity may have
cohesion, both cohesion and friction are treated as random fields.
For the sake of simplicity, any possible external loading (water
pressures, seismic forces, footing etc.) has been ignored. However,
all equations given below may easily be transformed according to
specific loading situations.

2.1, Treating friction as a random field

Following Coulombs failure criterion, the safety factor of a rock
slope against planar sliding is given by the formula

clL+- fo t(x)tan ¢@(x)dx

= W sin 8,

1

where t(x) is the normal reaction at the base of rock block {per unit
length of slope), tan ¢(x) is the friction coefficient along the

Fig. 1. Geometric elements of the problem.

discontinuity which is assumed to be a function of x (x is a
distance along discontinuity on the cross-section plane measured
from the lower end of discontinuity), ¢ is the cohesion along the
discontinuity which is assumed constant, L is the total length of
discontinuity on the cross-section plane, /i, is the inclination angle
of discontinuity considering the planar type of failure and W is the
total weight of rock block. Inspired from the LAS method proposed
by Fenton and Vanmarcke (2], in this respect LAS in one
dimension, tan ¢(x) is treated as a random field with specified
stochastic properties.

Since friction along the discontinuity is variable, it is apparent
that the normal force (or reaction) at every point along the
discontinuity must be known. The rational assumption that the
normal reaction varies linearly along the contact area can be made,
especially in the present case where a rigid body lays on a rigid
body. The stress distribution under the rock block will have a
trapezoidal pattern with maximum and minimum stress values
(oym and om, respectively) as given by the following equation:

M(] iL/—B) @)

OMm= T
where, ec is the eccentricity of the resultant force acting on the
base, in this respect the eccentricity due to the self-weight of rock
block (! ). It is reminded that Eq. {, is commonly used in
retaining wall and spread footing stability problems and it stands
for e. < L/6. If the eccentricity e. is equal to or greater than L/6, the
rock block is not bearing on its whole base but only on the front
edge (701

Based on the trapezoidal distribution of normal reaction below
the rock block of |, the normal stress at a given distance x on
the discontinuity is

L— w 4

() = faM e il Y %ﬁ"t(x) 3)
with
. x 1\ 2e,
tx)y=1+ (zvﬂi)w—e (4)
The safety factor expression of Eq. 71} can therefore be rewritten as

o i Z 5

T Wsin §;  tan fg, ©)
where

1 L,
z=1 / Fx) tan (x)dx 6)
0

The friction coefficient tan ¢(x) is assumed to be a Gaussian
random field with given mean u,, ,. variance o3,, »and covar-
iance function C(x). It should be noted that, although the Gaussian
nature of the field allows tan ¢(x) to take any real value, the
probability density is essentially zero outside of a (physical)
range of values. Also, the Gaussian nature of the field is a structure
rich enough to be non-trivial but simultaneously allowing the
statistical properties of Z and F to be determined in a closed form:
that would not be the case if tan ¢@(x) were log-normal, for
example, Thus, the quantity Z is a Gaussian random variable with
mean

EL/

ZI/ r(x)tut;m r,a

E[tan ¢(x)1dx

=Hian ¢ @)
The variance
St o = VarlZ] = B2~ % ®)
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can be calculated once a specific covariance function of the
random field tan ¢(x) has been specified. The Markovian

21x| ]

9[&]] [

C() =%y ,oXD [ ©

is a convenient choice. @y, 4 is the correlation length for tan g(x)
(also known as scale of fluctuation) of the random field [}]. This
explicitly means that

E[tan p(x)tan ¢(x)] = ptyy o +Cx=X) (10)

Then, as

L AL
E[ZZ]=L1—2 fu dx /U dx’ F)EG)E[tan ¢a(x) tan g(x')]

1 st L —
=ut, otz A dx /0 dx’ EF)EX)C(x—x') an
the variance of Z is given by the integral '
2 L L .
2 =”““”’f dx/ d¥ FORX)ex [—2"‘_"'] 12
Stan @ L?. 0 0 ( )[ )e p Gtan P ( )
Explici'tly
2, =02 L/6 2ec\*, (/0 13
tan ¢ = Otan o YolL/Oran 4)+ I./_IS Y1(L/Oan ¢) (13)
where
1 ‘
L/6)=———(2(L/6)— 1+~ 20 14
Yoll/&) 2(L/6)2( (L/6) ) (14

ril/&=

1 3 3 3 1Y am)
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The function y,(L/6) is well known in Markov processes [3],
where, ¢2y,(L/#) is the variance of the Markov process i.e. the
variance of the mean value of the process with point-variance o2
and correlation length & in an interval of length L. The function
v1(L/6) is associated with the (linear) distribution of the normal
stress along the discontinuity. Thus, the probability distribution of
Z is now completely specified:

ZNN(iutan w»sztan rp) (16)

One may note that when the correlation length of the random
field is large i.e. when the correlation length @n  is adequately
larger than the length of the discontinuity L, the variance s%,, »
becomes essentially equal to point variance o2, as it should.

Indeed, Eq. { | !} implies that
Sztan g~ U%an {D+O(L/9 tan @) an

The symbol O(x) is used in the usual sense to denote a quantity in
the order of magnitude x. In the inverse limit, when @aq ,, is small
the variance s2,, , vanishes linearly with @n 4.

The probability of failure can now be calculated. The safety factor
F is a linear function of Z, therefore F is another Gaussian variable

and the probability of failure can be immediately computed:

P(F<1)=P(Z : tan ﬁd(‘l——v‘%nﬁd))
= ¢(t&l’] ﬂd_.u(an rp_CL/(W cos ﬁd))

18
Stan ¢ LD

It is instructive to write the probability of failure in terms of the
‘deterministic’ value of the safety factor:

cL Hean o

Pl = e G A 1

In terms of this quantity the probability of failure reads

PF<1)= (E‘“—ﬁda _ﬁ)) (20)
Stan ]

For given input parameters, Eqgs. { 14} and {20) provide explicitly
the probability of failure. Nonetheless, apart from the obvious
usefulness of these equations in a risk assessment based design,
the same equation may be used inversely, from the safety factor
point of view. In this framework, the probability of failure is less
than any given value py ,,, for

T Stan ¢

Fed~z7 4 an
where z is determined by the normal distribution: &(z) = Pf max-
The variable z as a function of p; ..., can be found in numerous
textbooks in table form {27 ; graphically is shown in Fiz. 2, If, for
example, it is required that the probability of failure should not
exceed 10% then Eq. (7} advises that the deterministic safety
factor should better satisfy the above equality for z= —1.28. Both
directions may give important information about the input para-
meters (e.g. allowable slope face gradient fg,).

2.2. Treating both friction and cohesion as (correlated) random fields

In this case, cohesion varies along the discontinuity and the
safety factor is given by

_ Jolce+ i tan g())dx

d W sin S,

(22)

The Gaussian random fields c(x) and tan ¢(x) have expectation

values . and p.,, ,, respectively. The expectation value F = E[F] of
the safety factor reads

- 1 L
,::m /0 {Elc(o]+tx)E[ tan @(x)]}hdx

1 Lro W cos fg. -
-~ / {EIc(x)H*L—r(x)E[ fan qo(x)]}dx

_ ML 4 Hian @
T W sin ;" tan f,

In the proposed solution the possible correlation between
cohesion and friction is also taken into account. The correlation
functions of the random fields are

(23)

E[tan p(x)tan @(X)] = pthy ,+Cuan p(X—X) 24)
E[c(x)c(x)] = p2 4+ Co(x—¥%) (25)

E[tan g@(x)c(X)] = M yan plct Ce-tan px—X) (26)

0.0001 0.001 0.01 0.1 1

Fig. 2. The variable z of the standard normal distribution as a function of D i
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Egs. {74} and {Z5) express the autocorrelation of the respective
random fields, while Eq. (70} expresses the cross-correlation
between the two fields. Each covariance function assumes the
general Markovian form

2|x
Celx) = a2exp [ le'] (28)
€
2
Ce—tan o) =P¢_ tan »OcOtan p€XP [——9c—lr—);|1;a] (29)

where g , and o, are the point variances of the friction coefficient
and cohesion respectively and Gug , and 8¢ are the respective
correlation lengths. The parameter p._ ,, ,, is the correlation coeffi-
cient and Oc_ un » is the cross-correlation length, When cross-
correlation is regarded as uniform, as it is usually the case, the
cross-correlation length is infinite, & _ tan » = oo, and the associated
covariance function is reduced to a constant: Ce_ n ¢(X) =
Pe—tan pOcOtan p. Then the variance of the safety factor F can be
calculated explicitly:

E[}-‘Z],{#m y f dx[ dx’ ER)C ian o (X— x/)}t 7

2 4 . —L :
+{ﬂC+L—2/ dx/ dx' Ce(x x’)} (W oy [,d)

L cos
{#ram oHct f dxf dx EX)Ce- tan p(X— x)}.—lgd

W sin?g,
(30)
thus,
1 L 2 L cos f
s = 2 2 d 2
S VAl = an Zﬁ’dsm R (W sin ﬁd) i Wsin2ﬂdsc7 B
(€Y
where,
Se_tan ¢ =Pe—tan O tan p0c Yoll/Oc— i ) (32)
s2 =02 y,(L/60) (33)
% » has been given in Eq. {13 The function yo(L/6) is defined in
Eq. {14, The probability of failure now reads
1-F
PF<1)=9 (?) (34)

When the stochastic nature of the field c(x) is irrelevant, i.e. when
Sc=0 and Sc— @an o =0, Eq. (/4] is reduced to Eq. "0

2.3. The dimensionless form of the results

The number
W/L
AL‘{P:( / )C0; ﬁnﬂutan [ (35)
(s

is defined here as a natural analogue of the dimensionless
parameter A, which appears in soil slope stability analysis

175,29]. This definition allows one to re-write Eq. {.}) for the
expectation value of the safety factor in the form
= _ Huang 1

s L 36
F tan ﬁd(1+Am ok

Introducing also the coefficient of variance for each random
field by 6tan o =COVian pfiran , and 6. =COVu, the complete
formula for the variance of the safety factor, given by Eq. {117},

reads

Hzan &
5%‘ = tatnz,; [COV%an rp{}’uu'/gtan ¢)+ L/G)"‘h( / tan ¢)}

COV

COV,
Az £yoL/O)+2pc _ ¢C0Vra11 @

A ?0 L/ec tan d))} (37)

By these quantities the probability of failure, given in Eq. {31,
can be calculated. Inspecting Eq. { '/, one observes that the
cohesion field weighs in by the factor COV./A, while the friction
field weighs in by COV 4, . That is, when the level of uncertainty
is similar between cohesion and friction, a relatively large factor
A¢p renders the uncertainty of the cohesion practically unimpor-
tant, as far as the estimation of the probability of failure is
concerned.

3. Application examples
3.1. Treating friction as random field

Two examples of the probability of failure as a function of the
correlation length @ are given below for various ¢ and ¢ values of
the field tan ¢(x), where, the probability of failure p; has been
plotted against the normalized correlation length &/L; see

.33 . Cohesion is assumed constant along the disconti-
nu1ty (determmlstlc value). Therefore, different values of the mean
p correspond to different values of the deterministic safety factor
F. The curves are labelled according to both the associated value of
the deterministic safety factor F and u. The following data stand
for both examples: f;=30°, c=40kPa, L=10m, e,=0.5m and
W =9000 kN /m.

14 . s
094 - ~ T o o=tan(5°)
7 : ) ﬁ“‘a '-’;7{23"
s S My 2. —
071 Jh,'e,u / _ ——F=0897
0.6 e s e —F=0.934
PF 0.6 -peepammammnnr =542 75") —— e F=0.971
ik - wF=1.000
0.3+ ) )
: N F=1.049
0.2 4 — w\\'@ ST _
f R ST A F=1.089
014 - : W b
=R . o 7 F=1.130
0.001 0.01 0.1 1 10
oIL

Fig. 3. Example: pf vs 0/L plot for various ¢ values and for 6 = tan(5°).

[P
0.9 4 —-:\—?\ | o=tan(10°)
i Les ;
0.8 4 Hep M, —
| e s 15
0.7 fom o !e”f‘a EEes M| - e F=0.897
0.6 4Ll 75 T F=0.934
pF 0.5 e B=tan(27.75°) F=0.971
044 1 ‘ e F=1.000
03—+ \‘3\ & F=1.049
0.2 4 Pl s
olﬂ R ¥ ‘,0(\\”3 F=1.089
-0 T i1 ¥ F=1.130
- 1 - | B I 2l
0.001 0.01 0.1 1 10

Fig. 4. Example: pf vs 0/L plot for various x values and for o= tan(10").
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The general features of the probability of failure curves shown
in the Fios 7, 1 can be described as follows. As the correlation
length & of the random field tan ¢(x) becomes smaller the system
tends to behave more in a deterministic way, that is, the prob-
ability of failure tends to 0 or 1 depending on whether the
deterministic value of the safety factor is above or below the value
1. When the correlation length # becomes comparable to length of
the discontinuity, then the entire random field tan ¢(x) tends to
behave like a single Gaussian random variable, Indeed, by Eq. {7},
in the limit of large & (@—o0) the covariance function C(x)
approaches everywhere the constant value 2. Explicitly, as men-
tioned in Eq. {17} the variance s? that enters the probability of
failure formulas (18) or (20), tends to o2 for large correlation
lengths. Thus, in the limit of large & the probability of failure
approaches an asymptotic value that depends only on the point
variance ¢? of the random field tan ¢(x). The effect of greater
variance o2, observed by comparing the [igs, 2 ar i, is to
introduce stronger deviations from the deterministic answers for
the probability of failure, 0 or 1, on the left part of the curves, and a
stronger convergence towards the indecisive 0.5 value of the
probability of failure, on the right part of the curves. Finally, it is
mentioned that, both plots are in agreement with those obtained
by Griffiths and Fenton [} for soil slopes.

3.2. Treating both friction and cohesion as random fields

In , the probability of failure p; has been plotted against
both @an /L and 8 /L in a 3D graph for the same data given above
but only for the case of y,, , = tan(267) and p,, , = tan(30°)
Setting ¢en = tan(5°) (common in both cases) and y, = 40 kPa,
o = 20 kPa for the cohesion field, The cross-correlation of the two
fields is assumed uniform with p._ 5, , =0.2.

As with the case of the single random field, when the correla-
tion lengths of the coefficient of friction and the cohesion random
fields approach zero the curves tend towards the deterministic
answers, probability of failure 0 or 1. When, on the other hand, the
correlation lengths are comparable to or larger than the length L of
the discontinuity then the probability of failure, given by Eq. {945,
tends to towards asymptotic values that depends on the variances
620 o Oc and pe_ » Indeed, in the limit of large correlation
lengths the variance s# of the safety factor, given by Eq. {11}, tends
towards a fixed value given by

L cos Sy
Sl
Wsin“f3,

1 L 2

,}.2 + ()'2 ) o -

tan Zﬂ e W sin ﬁd & Pc— tan O tan pCc
d

(38)

which determines the asymptotic value of the probability of failure
via Eq. (24

logy,(8./1)

-—-f = P
e
3 | P

| I
logo(Bhan, /1) 1

Fig. 5. pf Vs Btan ,,/L and 6. /L plot.

3.3. The effect of the cohesion uncertainties

As explained in % the significance of the cohesion
uncertainties in the estimation of the probability of failure are
determined by the number Ag,, or more specifically by the relative
size of COVan  and COV, /Ac,. In the examples of the Sections 3.1
and 17 a moderate value for the cohesion was used, which
corresponds to the relatively large number A, ~20. The effect
of cohesion becomes significant for much smaller values of this
number. In the present example such cases are presented. Case 1;
Hian o = an(137) and . = 240 kPa; Case 2: p,, ,, = tan(17°) and
#c =240 kPa. Cases 1 and 2 correspond to A, equal to 0.67 and
0.50 respectively. The Cases 1 and 2 are contrasted for random
friction with COV iy , =0.5 and deterministic cohesion and for
random friction and random cohesion with COViy ,=0.5,
COV.=0.5 and correlation coefficient p._ ,, »=0.3. The results
are shown in iz,

34. Determining the minimum safety factor for given probability of
failure

This example illustrates the content of Eq. {?1). For any desired
maximum value for the probability of failure there is an associated
minimum necessary value for the safety factor, which depends on
the correlation length. Considering the example of Scction 2.1 for
the case O o= tan(5"), the dependence of the minimum
necessary safety factor has been plotted as a function of the
normalized correlation length &/L for the cases Pr imax = 10%, 1%,
0.1%. This is shown in I

1

0.9 [

0.8

07 il e

0' e tang - Case 1 -"'-u._-‘=

9 tand - Case 2 i s riieiaansnne
A s tang and ¢ - Case 1

0 tand and ¢ - Case 2

0.3 | 5

0.2

0.1

0 st L friit il

0.001 0.01 0.1 1 10

8/L

Fig. 6. Example: pf vs 8/L plot showing the effect of cohesion uncertainties on the
probability of failure.

i —— T . -
113:; 1 cesens pIE10% /
i A A Ao
. -
Frin 1.25 4o —pf=0.1% /,,'
1.2 /.f'
» sesnsms
1.15 +—— i = ,/' ,......---""_m
14 "o i Lot
1.05 - i S
0.001 0.01 0.1 1 10
o/L

Fig. 7. Minimum necessary safety factor Fp, vs @/L for maximum desired
probability of failure py .., =10%, 1%, 0.1%. Clearly the value of Prmax associated
with the curves decreases upwards.
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4. Summary and conclusions [6] «

Soils and rocks are among the most variable of all engineering [7) Chawdbiacy R

materials, and as such are highly amenable to probabilistic treat- [8] Chine ‘ of slip along
ment [t} Acknowledging the significance of spatial variability of fin SG Te { 1987,4:241-55.
shear strength along discontinuities, an analytical solution based [9] Tamimi 5, o DM, )
on the theory of random fields for the calculation of the prob- [10] 1oV ‘ Niine :
ability of failure of rock slopes against planar sliding is proposed. knowiedge-hased ¢

In this respect, both cohesion and friction coefficient of disconti- I

nuity are treated as Gaussian random fields fully described by their m) -
mean values (ji,pq, ) point standard deviations (oc, Gtan o), [12] 1 o PR. Uinad N
correlation lengths (fc,&wn ) and the parameters (o._ gy o ibility. Int | Rock Mech Min
Oc_tan ») Which account for the possible dependence between [13] Park H,
cohesion and the coefficient of friction. [14] Miller
The examples presented herein highlight the strong influence -
of scale of fluctuation of both cohesion and coefficient of friction i & me syn
on slope performance. Indeed, different correlation length values ~ [15] Jiones
may correspond to totally different probability of failure values.
Simplified probabilistic analyses, in which spatial variability is 171t
ignored by assuming perfect correlation, can lead to unconserva- [17] Tatone | rasselli G.
tive estimates of the probability of failure. This effect is most o i

[16]

pronounced at relatively low factors of safety or when the [18) : o ; -‘ _‘ I "
coefficient of variation (COV = o/u) of the discontinuity strength Ie 2011:38:58-
is relatively high. The above are in full agreement with the results [19] )G L
presented by Griffiths and Fenton [| for soil slopes using the [20] 1i
Random Finite Element Method (RFEM). L
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