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Abstract:  Analysis of landslides starts with a reconsideration of the classical equations that 

govern “infinite slope” stability. In this paper two novel approaches for interpreting these 

equations are presented. First we look at probabilistic implications for infinite slope failure by 

implementing the First Order Reliability Method (FORM). This method is useful for assessing 

the sensitivity of the factor of safety to the various input parameters in the equations. Second we 

present an elasto-plastic finite element model of an infinite slope which is validated against the 

equations. The numerical approach has great potential since it is the only feasible method of 

analysis for more complex soil/water conditions and geometry.  

 

INTRODUCTION 

This paper revisits the classical equations of infinite slope stability analysis in order to better 

understand the mechanics of failure and the influence on the Factor of Safety of the various input 

parameters relating to shear strength, geometry and water conditions. Two quite different 

approaches are presented. First a FORM analysis is presented which enables the “probability of 

failure” of an infinite slope to be estimated as opposed to the more traditional “factor of safety”. 

Such an analysis involves inputting the mean and standard deviation of the various input 

parameters together with a “performance function” that gives the combination of those 

parameters that would cause failure. FORM delivers the most likely values of the input 

parameters to cause failure and the probability that they would occur. A by-product of FORM is 

a set of sensitivity factors, which give a measure of the “importance” of each of the input 

parameters to the overall risk assessment. This is useful for any further studies by indicating to 

the investigator which parameters should be focused on, possibly at the expense of other less 

important parameters. The sensitivity factors are also useful in design and practice by indicating 

where mitigation efforts might be concentrated in potentially unsafe slopes. For a review of some 

of the classical methods of probabilistic slope stability analysis, including FORM, the interested 

reader is referred to Nadim et al. (2005). 

 

The second part of the paper describes some elasto-plastic finite element (FE) analyses of 

infinite slopes and validates the numerical solutions against the classical infinite slope equations. 

Once the FE framework has been properly developed, the model will then have great potential 

for investigating more complex geometries, groundwater conditions and soil property variability.  

Other factors that may be of interest in later studies include the role of suctions above the water 

table and infiltration rates due to heavy rainfall. The key point is that numerical methods, and 

specifically the FE approach, offer the only feasible approach for realistic modeling of complex 

geotechnical systems that no longer fit the assumptions made in the classical equations.  
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BRIEF REVIEW OF INFINITE SLOPE THEORY 
 

The infinite slope problem is a special case of general slope stability analysis in which the 

slope geometry is particularly simple as shown in Figure 1. The key assumption is that the slope, 

being “long” relative to the depth of soil in the potential sliding mass, leads to a potential failure 

mechanism that is translational and parallel to the ground surface. 

  
Figure 1. Infinite slope geometry. 
 

Since the top and bottom of the slope are assumed to be so far away that they have no 

influence on the solution, we can consider the equilibrium of a typical slice anywhere within the 

potential sliding mass.  Such a slice is shown in more detail in Figure 2 together with dimensions 

and the main forces acting on it.  

 
Figure 2. Geometry and forces acting on a typical slice of an infinite slope 
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The symbols on the figure and subsequent formulas are defined in Table 1. 

 

Table 1. Notation used in infinite slope analysis 
 

Symbol Definition 

( 0)u  =  Drained friction angle (undrained friction angle) 

( )uc c  Drained cohesion (undrained shear strength) 

L  width of slice 

H  soil depth 

m  water table (WT) depth ratio 

  slope inclination 

m  moist or “dry” unit weight (above WT) 

sat  saturated unit weight (below WT) 

   buoyant unit weight (
sat w − ) 

F  side forces 

W  slice weight (total) 

dN  normal force (total) 

dT  developed shear force 

 

If the maximum available shear resistance along the potential sliding surface is given by 
fT , then 

the factor of safety can be defined:  

                                                     
f

d

T
FS

T
=            (1) 

To account for the water table, we may assume the streamlines and equipotentials run, 

respectively, parallel and perpendicular to the ground surface leading to the following expression 

for the water pressure on the potential failure:  

 

                                                   2coswu mH =                 (2) 

 

After some rearrangements, equation (1) can be written in its general form as: 

 

               
(1 ) tan

( (1 ) )cos sin (1 ) tan

m

sat m sat m

m mc
FS

H m m m m

  

      

 + −
= +

+ − + −
      (3) 

 

A few useful special cases follow where for “dry” soil: 

 

                                        
tan

cos sin tanm

c
FS

H



   

 
= +           (4) 

 

for submerged soil: 
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tan

cos sin tansat sat

c
FS

H

 

    

  
= +          (5) 

 

and for “undrained clays” ( 0u = ): 

 

                                                 
cos sin

u

sat

c
FS

H  
=          (6) 

 

Some of equations (3)-(6) will form the basis of the analyses and validations described later. 

 

 

REVIEW OF THE FIRST ORDER RELIABILITY METHOD (FORM) 

 

Theory 

The first order reliability method (FORM) is a process which can be used to determine the 

probability of a failure given the statistics (mean and standard deviation) of input data and a 

“limit state function”. The method is based on the Hasofer-Lind reliability index (Hasofer and 

Lind 1974), HL, which can be described as the distance, in standard deviation units, between the 

most probable set of values and the most probable set of values that causes a failure. Calculation 

of this value is an iterative process, finding the minimum value of a matrix calculation subject to 

the constraint that the values result in a system failure. However, common solver routines found 

in several software packages (e.g. Excel and Mathematica) can easily arrive at the solution. Once 

the reliability index has been determined, the probability of failure, 
fp , is a simple calculation.  

 

Limit State Function 

Each reliability analysis requires a limit state function, which defines failure or safe 

performance. Limit states could relate to strength failure, serviceability failure, or anything else 

that describes unsatisfactory performance. The limit state function, g, is defined 

 

1

1

( ,..., ) 0 Safe

( ,..., ) 0 Failure

N

N

g x x

g x x

 ⎯⎯→

 ⎯⎯→
                      (7) 

 

where N is the number of input random variables. Often it is sufficient for the limit state function 

to be the resistance minus the load. Other common forms of the limit state function are the factor 

of safety minus one and the logarithm of the factor of safety. 

 

For relatively simple systems, the limit state function may be determined analytically, 

although for more complex systems it may need to be approximated numerically with curve 

fitting. 

 

Hasofer-Lind Reliability Index 

The reliability index, HL, is the distance in standard deviation units between the most 

probable set of random variables (the means), and the most probable set of random variables that 

causes a failure. Determination of HL is an iterative process and it is defined by:  
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where {(xi–i)/i} is the vector of the random variable values reduced to standard normal space 

and  R  is the correlation matrix of the variables. 

 

Visualization 

To better understand and visualize this method, consider the following arbitrary problem with 

two correlated random variables, x1 and x2, assumed to be normally distributed with the 

following parameters:  

 

0.6
1
=x  0.1

1
=x  

0.7
2
=x  75.0

2
=x  35.0

21 , −=xx       (9) 

 

Let failure of the system be given by the limit state function: 

 

( ) 3 2

1 2 1 2, 0.03 0.25 29.16 0g x x x x= − − + =       (10) 

 

The probability density function governing two normal random variables correlated by  can be 

written as (e.g., Fenton and Griffiths 2007): 

 

( )
( )

2

,

2
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Note that the minimum value of ( )21, xx , given that the limit state function is zero, is the 

Hasofer-Lind reliability index, HL. Plotting the probability density function in three dimensions 

would result in a surface in the shape of a bell. By definition, the volume under the surface is 

unity. The limit state function divides the volume into a failure region and a safe region. The 

probability of failure is defined as the volume under the probability density function in the 

failure region. FORM uses a first order approximation of the limit state function and therefore 

the calculated probability of failure is also approximate. Numerical integration of the probability 

distribution function in the failure region leads to more accurate results and is discussed later.  
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Figure 3. Plan view of the probability density function and the actual and approximated limit 

state functions 

 

In plan view as shown in Figure 3, the probability density function can be visualized as a 

contour plot involving a series of ellipses, and the limit state function can be seen as a line 

separating the failure and safe regions. The contours in Figure 3 are actually contours of (x1,x2) 

(i.e. (x1,x2) = 1, 2, 3, 4…), nevertheless, each contour represents a constant value of the 

probability density function. 

The solid curved line represents the actual limit state function. The smallest ellipse that the 

limit state function touches is the contour of  = HL, represented above by the darker ellipse. 

The point where they meet represents the most probable failure point. The dashed straight line 

that also passes through that point is the first order approximation of the limit state function. 

The first order approximation assumed in FORM could lead to an underestimate of the 

probability of failure if the actual limit state function curves towards the mean values as seen in 

Figure 3. A more accurate, yet more time consuming, method to determine the probability is to 

numerically integrate the probability distribution function in the region of failure. A relatively 

simple algorithm involving the repeated mid-point rule (e.g., Griffiths and Smith 2006) can be 

devised to accomplish this task.  

 

FORM software 

Excel 

The limit state function and properties described in equations (9) and (10) have been run 

through an Excel spreadsheet using the solver add-in (e.g., Low and Tang 1997, Xu and Low 

2006, Denavit 2006) in which the FORM algorithm has been implemented. The Hasofer-Lind 

reliability index is given as HL L = 2.40, corresponding to a probability of failure given by 

0.814%fp = . 
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Mathematica 

Using Mathematica, the same calculations can be performed. The following shows the lines 

which must be executed: 

 

 
 

Again, the probability of failure is 0.814%, with a reliability index of 2.40, corresponding to a 

most probable failure point of x1 = 8.15 and x2 = 7.19. Both the reliability index and the most 

probable failure point can be graphically checked using Figure 1. 

As discussed earlier, numerical integration can determine the probability of failure directly 

but more slowly.  Below is a set of commands which will perform the numerical integration: 

 

 
 

Numerical  integration  of  the  volume of  the  probability  density  function  corresponding to 

g(x1, x2) < 0 gave the probability of failure 0.964% which is 16% higher than given by FORM. 

 

PROBABILISTIC INFINITE SLOPE ANALYSIS 

 

Infinite slope stability analysis is ideally suited to treatment by FORM since there are ready-

made analytical solutions for FS  as described earlier to operate on. 

Starting with equation (3) and noting that failure of the slope corresponds to 1FS = , we can 

write a limit state function as: 
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( , tan , , , , , ) 1 0sat mg c m H FS     = − =        (13) 

 

where g is a function of up to seven random variables. 

Consider an example problem with the following properties/dimensions which for this 

illustration will be assumed to be normally distributed as indicated in Table 2 (in each case a 

coefficient of variation of 0.3V  = =  has been assumed). 

A conventional calculation using equation (3) based on the mean values in Table 2 gives 
1.45FS =  which would be considered an adequate factor of safety. 

 

 

Table 2. Mean and standard deviation values used in example problem 

 

 2 (kN/m )c

 

tan

 

3 (kN/m )sat

 

3(kN/m )m

 

m

 


 

 (m)H

 



 

10   0.466

  

 19  17.5   0.5

  

25

 

2.0  



 
3  0.140

 

5.7  5.25  0.15

 

7.5

 

0.6  

 

To demonstrate FORM, let us now treat the parameters in Table 2 as normally distributed 

uncorrelated random variables. Running these parameters, together with the limit state function 

given by equation (13) through FORM, leads to the most likely or “design” values of the seven 

parameters as shown in Table 3 to result in infinite slope failure.  

 

 

Table 3. Most likely combination of parameters to cause infinite slope failure in the example 

problem 

 
2 (kN/m )c

 

tan

 

3 (kN/m )sat

 

3(kN/m )m

 

m

 
   (m)H

 

8.69   0.400

  

 19.70  18.02   0.52

  

30.6

 

2.21

 

 

As a check, it is readily shown that if these parameters are substituted into equation (13) the 

result is 1 ( 0)FS g= = .  Comparing the design values from Table 3 to their mean values in Table 

2 it is seen that both shear strength parameters are smaller than their mean values, but the other 

five parameters are all greater. 

In addition to the design values shown in Table 3, FORM analysis gives an overall reliability 

index in this case of 0.973 = . Assuming a normal distribution, the reliability index is uniquely 

related to the probability of failure through the formula: 

 

                1 ( )fp = −                (14) 
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where ( )  is the standard normal cumulative distribution function (CDF). Standard tables then 

give us that: 

 

               
1 (0.973)

0.165

fp = −

=
                (15) 

 

A probability of failure of 0.165  or 16.5%  is higher than might be anticipated for a slope 

with a “comfortable” factor of safety (based on the mean) as high as1.45 . What this emphasizes 

however is that the more uncertainty present in the input parameters of a system, the more 

vulnerable that system becomes to the formation of an “unlucky” combination of parameters 

resulting in failure. 

It might be justifiably argued that most engineers would not use the mean values of highly 

variable soil properties in a conventional analysis. More likely they would use conservative 

values lower than the mean (see e.g. Griffiths and Fenton 2004) which would have led to a lower 

factor of safety. A final point to be considered here is that for the purposes of this demonstration 

exercise, a rather pessimistic assumption was made that all seven input parameters were random 

with the same coefficient of variation equal to 0.3 . In a more realistic study, some of the 

parameters might be treated as random while others would be fixed to constant (or deterministic) 

values. In addition, the chosen random variables would unlikely have the same coefficients of 

variation. For example, unit weight is generally believed to have a much lower coefficient of 

variation than shear strength parameters say (see e.g.  Lee et al. 1983). 

A final by-product of a FORM analysis is the generation of  “sensitivity parameters” 

summarized for this example in Table 4 in descending order. 

 

Table 4. Sensitivity values for the seven parameters used in the FORM analysis 

 

  tan

 

 c  H  m  
sat  

m  

0.390

 

0.232

  

0.202

  

0.125

 

0.025

  

 
0.015  

0.011

  

 

Sensitivity parameters give a guide to the relative importance of the random variables used in 

a FORM analysis. The sensitivity parameter of each variable is related to the slope of the limit 

state function with respect to that variable (e.g. g   ) at the design point. Sensitivity 

parameters for all the variables are normalized such that they sum to unity. In this case, the 

numbers in Table 4 indicate that the infinite slope analysis is most sensitive to the slope 

inclination ( )  followed by the shear strength parameters (tan  and )c   and the soil depth ( )H . 

The infinite slope stability analysis is shown to be least sensitive to the water depth ( )m  and the 

unit weights 
sat m(  and )  . Sensitivity information such as this enables engineers to decide 

which parameters may justify additional field or laboratory investment. The additional expense 

of such further testing may be offset by improved characterization of the problem and less 

conservative design.  

 

REVIEW OF FINITE ELEMENT SLOPE STABILITY ANALYSIS 
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The elasto-plastic finite element method of slope stability has been amply described 

elsewhere (e.g. Griffiths and Lane 1999) so here we provide just a brief review.  

The method involves setting up a finite element mesh covering the spatial extent of the slope 

problem under consideration. Knowing the unit weight of the soil in the slope, gravity loading is 

applied using a quite standard FE algorithm. The procedure then involves systematically 

reducing the shear strength of the soil using a gradually increasing strength reduction factor 

( SRF ) as follows: 

          
tan

arctan    and    F F

c
c

SRF SRF




  
 = = 

 
              (16) 

where 
F  and 

Fc  are the factored soil strength parameters being used in the analysis.  

A point is eventually reached when the soil has been sufficiently weakened that it is no longer 

able to sustain the shear stresses generated by the gravity loading. At this point the displacements 

increase rapidly, the algorithm is unable to find a stress distribution that simultaneously satisfies 

global equilibrium and the Coulomb failure criterion and the factor of safety of the slope is given 

by: 

 

                            FS SRF                 (17) 

 

Application of FE to infinite slope analysis 

Based on Program 6.3 in the text by Smith and Griffiths (2004) using 8-node plane-strain 

quadrilateral elements, a mesh generation routine was developed enabling analysis of a three-part 

slope problem of the type shown in Figure 4. 
 

 
Figure 4. Typical three-stage mesh for analysis of long slopes 

 

The user has control over the length and inclination of each section and the soil properties 

assigned to each element. The program also allows the thickness of the soil in each section to be 

varied, but only a constant h  is considered here. A water table can also be implemented, not 

necessarily parallel to the main slope, but results including water pressures have not been 

included in this paper. 
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In setting up the model, various different boundary conditions were considered on the right 

and left vertical mesh boundaries in order to most closely reproduce results given by the “infinite 

slope” equations (3)-(6).  Boundary conditions considered included various combinations of 

fixity involving rollers, “tied freedoms” and “skew boundary conditions”. Some of these 

conditions involved quite customized modifications to the FE code and a detailed discussion of 

boundary conditions will be given more detailed treatment elsewhere. Only the simple case 

involving vertical roller boundary conditions to the left and right will be discussed here.  

 

Validation of the FE program on an undrained clay slope 

The first example is of an infinite slope of undrained clay ( 0)u = with the following 

properties and geometry:  

 

0u =  

2100 kN/muc =

 

10 mH =  
320kN/msat =

 

26.6 =   

 

These parameters substituted into equation (6) give: 

 

                  
100

1.25
10(20) cos 26.6 sin 26.6

FS = =             (18) 

 

In the corresponding FE analysis, the central section was fixed to the required inclination with 
tan 0.5 ( 26.6 ) = =   and the factor of safety FS computed for a range of gradients of the outer 

sections of the slope defined by tan . The results plotted in Figure 5 give the factor of safety 

( FS ) computed by FE vs. the “slope ratio” defined as tan tan  . The factor of safety can be 

seen to be quite sensitive to the end slopes although good agreement with the classical solution 

of 1.25FS =  was obtained for tan tan 2   . 
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Figure 5.  Influence of end slopes on FS for an undrained clay “infinite slope” analysis by FE  

 

Figure 6 shows the deformed mesh at failure clearly demonstrating the concentrated zone of 

shear strain at the base of the mesh. 

 

 
 

Figure 6.  Deformed mesh at failure for undrained clay “infinite slope” analysis by FE 

 

 

Validation of the FE program on a drained frictional slope 

The second example is of an infinite slope of drained frictional  soil with the following 

properties and geometry:  
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15 =   
29.6 kN/mc =

 

1.2 mH =  
318.5kN/m =

 

26.6 =   

 

These parameters substituted into equation (4) give: 

 

                    
9.6 tan15

1.62
1.2(18.5) cos 26.6 sin 26.6 tan 26.6

FS = + =         (19) 

 

The results plotted in Figure 7 once more show FS  vs. tan tan   for the frictional soil 

analysis.  

In this case good agreement with the classical solution of 1.62FS = , was obtained closer to 

tan tan 1.5   .  

 

 
 

Figure 7.  Influence of end slopes on FS for frictional soil “infinite slope” analysis by FE 

 

Note on “tied freedoms” 
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Figure 8.  Freedom numbering for “infinite slope” analysis by FE with “tied freedoms” 

 

The FE models have been validated rather successfully against classical solutions, however 

they did require a high number of elements and a significant lateral extent to avoid interference 

from the boundaries. Recent work has concentrated on a much less computationally intensive 

model involving a single column of elements and “tied freedoms” as indicated in the schematic 

in Figure 8. 

 
 

Figure 9.   FS  vs. Poisson’s ratio for an undrained clay “infinite slope” analysis by FE using 

“tied freedoms”. 
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Figure 10.   FS  vs. Poisson’s ratio for a frictional soil “infinite slope” analysis by FE using “tied 

freedoms”. 

 

The idea of tied freedoms in this context is to force the left and right sides of the column to 

move identically by mimicking the “infinite slope” assumption in which there is no bias to either 

side of a typical column. Initial analyses using this model are encouraging, but need further work 

since the rather confined nature of the enforced deformations has introduced a “Poisson’s ratio 

effect” as shown in the results given in Figures 9 and 10 for the same problems considered 

previously. Clearly the factor of safety increases quite significantly with Poisson’s ratio. 

Figures 11(a) and (b) show, respectively, the deformed mesh and displacement vectors at 

failure using tied freedoms. It may be observed for example, that the nodal displacement vector 

at the top left corner is identical to the displacement vector at the top right and so on.  
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Figure 11.   Deformed mesh (a) and nodal displacement vectors (b) at failure for an undrained 

clay “infinite slope” analysis by FE using “tied freedoms”. 

 
 

CONCLUDING REMARKS 

 

The paper has introduced two methods of analysis of landslides via the classical “infinite 

slope” equations. The first approach used the first order reliability method (FORM) to predict the 

probability of infinite slope failure in terms of up to seven random input variables. Although the 

method does not properly account for spatial correlation effects, it is able to give qualitative 

estimates of the sensitivity of the infinite slope stability problem to the various input parameters. 

In the example presented here, the “most important” parameters appeared to be the slope angle 

  and the shear strength parameters tan and c  while the unit weights 
sat  and 

m appeared 

least important. A spreadsheet program using the FORM methodology has been developed and 

will form the basis of future research on this subject. 

The second approach involved adapting an existing elasto-plastic finite element slope stability 

program. Although the infinite slope geometry is rather simple, the incorporation of appropriate 

boundary conditions to reproduce an “infinite” condition provided an initial challenge. A simple 

approach was to extend the mesh laterally a sufficient distance such that the side boundary 

conditions became unimportant. Good agreement with the classical equations was obtained by 

adjusting the gradient of the side slopes. This method was rather computationally intensive 

however due to the large number of elements required, so a second approach is currently under 

development involving the use of “tied freedoms” allowing analysis of a single column of 
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elements. Initial results are encouraging, however the confined nature of the enforced 

displacements introduced a Poisson’s ratio effect which needs further investigation. 

Numerical modeling via the finite element method offers one of the most powerful tools for 

analyzing landslide phenomena. An effective and properly validated finite element framework 

will have great potential for improved understanding of the mechanics and mitigation of 

landslides. In combination with probabilistic tools such as FORM in order to assess sensitivities, 

future FE research will be able to investigate influences such as spatially varying soil properties, 

ground water flow conditions, slope geometry, pore water suctions and infiltration. 
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