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Abstract. Hydraulic fracturing is an important technology to increase the amount 
of production extracted from unconventional hydro-carbon reservoirs. In spite of 

the recent proliferation of the stimulation technique, the technical understanding of 
how fractures initiate, propagate, and interact with material heterogeneity is not 

well established. The need for improved scientific understanding of this 

methodology has motivated this research, which seeks to develop probabilistic 
finite element software for modeling fracture propagations in random formations. 

The finite element development proposed herein will combine the eXtended Finite 

Element Method (XFEM) with random field theory to characterize fracture 
propagation within heterogeneous tight hydro-carbon reservoirs without any need 

for re-meshing. The XFEM not only has a potential for improved modeling 

accuracy, but also reduces computational costs that might be needed when using a 
standard finite element method. Stochastic modeling of hydraulic fracturing will 

be used to further account for randomly distributed formation properties of the 

tight formation and the resulting various hydraulic fracturing patterns. The new 
methodology from this research will be called eXtended Random Finite Element 

Method (XRFEM). When combined with a Monte-Carlo simulation approach, this 

methodology will lead to probabilistic information on the response of various 
formations and enable better technical and financial risk management of 

unconventional reservoir stimulation. Parameters used in the XRFEM modeling of 

well stimulation are subject to different types and levels of uncertainties caused by 
inherent spatial variability in geological formations. 
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1. Introduction 

Hydraulic fracturing is the most widely used stimulation technology enhancing the 

amount of hydro-carbon production from unconventional formations. Although the 

technology can significantly increase hydro-carbon production from low permeability 

reservoirs, the interactions and complex nature is still not fully understood.  

Development of  realistic simulation tools for the hydraulic fracturing process is 

therefore an important step towards understanding the complex, multiscale and 

multiphysics phenomena and developing efficient and environmentally safe hydraulic 

fracturing technologies during the production. However, the numerical simulation of 

hydraulic fracture growth remains a significant challenge due to a number of factors 



including material heterogeneity, complexity of fracture propagation mechanisms, and 

interactions between multiple hydraulic fractures.  

To deal with the complex behavior of hydraulic fracturing, the main objective of 

this research is set to develop an advanced finite element program to provide a better 

analysis tool for hydraulic fractures in various formations. In this paper, an eXtended 

Finite Element Method (XFEM) scheme is developed allowing mechanical 

representation of fractures and its propagation within heterogeneous formations without 

any need for re-meshing. The XFEM not only has a potential for improved modeling 

accuracy, but also reduces computational costs that might be required when using a 

standard finite element method.  

Material heterogeneity also plays a key role in determining fracture initiation and 

propagation. Thus a novel probabilistic approach combining the XFEM and random 

field theory is proposed, namely eXtended Random Finite Element Method (XRFEM). 

This new method will be able to model fractures and account for randomly distributed 

properties (e.g. stiffness and strength) within unconventional formations. This analysis 

will allow users to customize their analysis for different site-specific conditions and to 

evaluate the effectiveness of hydraulic fracturing as a form of stochastic analysis. To 

improve the applicability and accessibility of the XRFEM program, the codes are 

developed based on the "in-house" FE program written in Fortran 2003. 

2. Fracture modeling within random heterogeneous formation  

2.1. eXtended Finite Element Method (XFEM) 

XFEM was first introduced by Belytschko and Black (1999) and Moës et al. (1999). 

They presented enrichment functions that could be added to the traditional finite 

element approximation. Therefore the numerical scheme allows discontinuous 

displacement along a discontinuous fracture, and therefore the displacement is entirely 

independent to the mesh.  
To represent the discontinuous deformation along a fracture, the XFEM utilizes 

two different enrichment functions, namely Heaviside and Branch. The Heaviside 

function is applied to the elements entirely cut by a fracture as shown in Figure 1(a) 

and given by Eq. (1). 

 

            (a) Element divided by a fracture                                          (b) Element containing a fracture tip 

Figure 1. Example of enriched elements (Youn and Griffiths 2014) 
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where      is the signed distance function normal to the fracture. The Heaviside 

enrichment function represents fracture aperture changes between the fracture surfaces. 

Branch functions are used to enrich elements that contain fracture tips as shown in 

Figure 1(b) and given by Eq.(2). 
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where   and   are the polar coordinates of the point   in the coordinate system centered 

on the tip of the fracture with the x-axis aligned in the fracture direction (See Figure 2). 

The Branch enrichment function is used to represent fracture asymptotic fields 

suggested by Westergaard fracture tip stress and displacement analysis (Moës et al., 

1999). 

 

Figure 2. Fracture tip polar coordinates,   and   (Youn and Griffiths 2014) 

Inclusion of the Heaviside and Branch enrichment terms results in the following 

displacement field within a continuous domain: 

                                                     
            (3) 

                                              
 
         

  

where    is the nodal displacement vector for the continuous part of the normal finite 

element solution,                are finite element shape functions,   is the set of all 

nodes in the mesh,     is the set of nodes of the divided element by the fracture (red 

circles in Figure 1(a)),      is the set of nodes surrounding an element contains a 

fracture tip (green squares in Figure 1(b)) and    and     are the nodal enriched 

degrees of freedom vectors for Heaviside and Branch enrichment functions, 

respectively. 

 

Figure 3 shows an example of an XFEM simulation using the “in-house” FE code 

developed at CSM and based on the public domain software of Smith et al. (2014). 



This is part of an initial study of XFEM to understand how enrichment functions are 

implemented. Figure 3(a) shows three horizontal 1D line fractures spread over a square 

domain which is then subjected to a uniform tensile stress applied to the upper and 

lower boundaries of the domain. Once the fracture geometry and location are defined, 

different enrichment terms are selectively applied to the different element groups, 

namely elements without a fracture, elements divided by a fracture, or elements 

containing a fracture tip. 

           

(a) Schematic of the example study          (b) Enriched node selection                 (c) Deformed mesh                  

Figure 3. An example study using XFEM and COMSOL 

Due to the enrichment functions applied to the regular mesh geometry, the 

additional displacements by XFEM along the fractures are developed as shown in 

Figure 3(c). 

To consider fracture propagation, a constant propagation length is added to the 

previous fracture tip with the orientation calculated using stress intensity factors (SIFs) 

based on the assumption that the energy release rate G is equal to the J-integral. The 

fracture direction is determined using Eq. (4) given by Moës et al. (1999). 
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where    is relative orientation of fracture propagation comparing to the angle of the 

previous fracture tip and KI and KII are the SIFs for mode 1 and mode 2 fracture 

displacements, respectively.   

2.2. Random field and spatial correlation 

The combined use of random fields and finite elements in a Monte-Carlo framework 

was first introduced in the early 1990s (Griffiths and Fenton 1993). The method 

provides a systematic way of introducing material variability with statistically defined 

properties given by a mean, a standard deviation and a spatial correlation length. Any 

appropriate formation property distribution such as elastic modulus or fracture 

toughness can be characterized this way.  

The spatial correlation length represents the distance over which the rock property 

is reasonably well-correlated to its neighbors. The stochastic concept can be used to 

E = 1.0MPa

ν  = 0.3

σ = 0.1MPa

σ = 0.1MPa



model anisotropic correlation structures by applying different correlation lengths in the 

horizontal and vertical directions. In this work, a Markovian correlation function is 

used where the spatial correlation is assumed to decay exponentially with distance 

(Vanmarcke 1984) as in Eq. (5). 

                                                                                                       (5) 

where     is the absolute distance between any two points in the random field. The 

influence of   on a wide range of geotechnical systems has been assessed through 

parametric studies (e.g. Griffiths et al. 2009, Klammer et al. 2010, Huang et al. 2010, 

Kasama and Whittle 2011, Chen and Zhang 2013,) and has been shown to have a 

significant influence on probabilistic output quantities under considerations. 

Furthermore, the correlation length has been shown to affect the nature and extent of 

failure zones which is an important aspect of this research in relation to fracturing.  

       

    
       (a) correlation length=0m                 (b) correlation length=5m                  (c) correlation length=10m 

Figure 4. Random field examples and histograms of Young's modulus with different correlation lengths 

(mean=1MPa, standard deviation=0.5MPa) 

Figure 4 shows examples of random fields and histograms in terms of Young's 

modulus (E) distribution. The lighter zones indicate smaller Young's modulus, so that 

the finite elements are more compressible and vice versa. A lognormal distribution is 

applied to generate the random property distributions, which is used in the example 

studies given below. The random field examples (20m 20m) present the effect of 

different spatial correlation lengths, while the mean and standard deviation are kept to 

constant (mean=1MPa and standard deviation=0.5MPa). As shown in Figure 4(a), a 

zero correlation length generates a fully independent distribution for each neighboring 

element. As the correlation length increases however, elements with similar property 

values are grouped together, and the size of the group gets larger.  
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3. Simulation results 

To evaluate the applicability of XRFEM and the effect of random property 

distributions on fracture propagation, an example study is performed with an initial 

horizontal fracture located along the middle of the domain (See Figure 5a). A 3m 

length fracture is located on the left part of the square domain (20m 20m), and the 

entire domain is subjected to a uniform tensile stress applied to the upper and lower 

boundaries of the domain. 

μE = 1.0MPa

ν  = 0.3

σ = 1.0 kPa

σ = 1.0 kPa

Fracture (3m)

 E = 0.2MPa

         
(a)  Schematic of the example study                     (b) Enriched node selections and fracture geometry 

Figure 5. An example study using XRFEM 

To run the XRFEM, randomly distributed Young's modulus are calculated by the 

random field program, and then those calculated random parameter is assigned into the 

each finite element independently. The Young's modulus distributions used in the 

above section 2 (See Figure 4) are applied for these case studies.  

   

 (a) correlation length=0m              (b) correlation length=5m             (c) correlation length=10m 

Figure 6. Fracture propagation pattern within random formations 

Although the regular XFEM with constant properties yield a straight propagation 

as in Figure 5, a randomly distributed Young's modulus creates irregular concentration 

of stress near the fracture and tip, so that the fracture pattern differs significantly from 

the constant property case (See the yellow line indicating the fracture geometry in 

Figures 5 and 6).  

As shown in Figure 7, the fracture propagations tend to move through the brighter 

zone, but only the element near the vicinity of the fracture tip could directly affect the 

direction of the propagation. This can be mainly due to the size of the zone used to 

before propagation after propagation 



calculate the stress intensity factor. Therefore the element having the maximum 

quantity of Young's modulus does not significantly contribute to the direction of 

propagation, where the distance between the element and the fracture tip is far from 

each other. 

  

                (a)     in kPa                             (b)     in kPa                                     (c)     in kPa    

 

                (d)     in kPa                             (e)     in kPa                                     (f)     in kPa    

  

                (g)     in kPa                             (h)     in kPa                                     (i)     in kPa    

Figure 7. Stress contours (in kPa) within random fields of different correlation lengths (correlation 
length=0m for Figures 7(a)-7(c), correlation length=5m for Figures 7(d)-7(f), and correlation length=10m for 

Figures 7(g)-7(i)) 

By performing a series of Monte-Carlo simulation with this methodology, the final 

achievable data will be the average extension of the hydraulic fracture measured from 

the location of the wellbore or injection point. In this paper, however only several 

example cases are tested as an initial step in the XRFEM development. This study will 

be further extended by investigating different probability functions, correlations 

between different material parameters, and the introduction of hydro-mechanical 

coupling scheme. 



4. Result and discussion 

The XFEM program has been combined with random property generation based on 

random field theory and will be used to investigate the stochastic behavior of hydraulic 

fracturing within various geological formations. Parameters used in the XRFEM 

modeling of hydraulic fracture are subject to different types and levels of uncertainties 

caused by inherent spatial variability in geological formations. Initial parametric 

studies were carried out by controlling the key probabilistic parameters, spatial 

correlation length. It is clearly shown that the combination of those two different 

numerical schemes works well, and the randomness of the rock property directly 

affects the final pattern of fracture propagation, which may in turn significantly affect 

efficiency of hydraulic fractures.  

References 

[1] T. Belytschko and T. Black, Elastic crack growth in finite elements with minimal remeshing, Int J Numer 

Methods Eng, 45 (5), 601–620, 1999. 

[2] J-.J. Chen and L. Zhang, Effect of spatial correlation of cone tip resistance on the bearing capacity of 
piles, J Geotech Geoenv Eng, ASCE, 139 (3), 494-500, 2013 

[3] M. Fraldi and F. Guarracino, F, Evaluation of impending collapse in circular tunnels by analytical and 

numerical approaches, Tunn Undergr Space Tech, 26 (4), 507–516, 2011. 
[4] D.V. Griffiths and G.A. Fenton, Seepage beneath water retaining structures founded on spatially random 

soil, Geotechnique, 43 (4), 577–587, 1993 

[5] D.V. Griffiths, J. Huang, and G.A. Fenton, Influence of spatial variability on slope reliability using 2-d 
random fields, J Geotech Geoenv Eng, ASCE,135 (10), 1367–1378, 2009 

[6] J. Huang, D.V. Griffiths, and G.A. Fenton, System reliability of slopes by rfem, Soils Found, 50(3), 343–

353, 2010. 
[7] J.A. Hudson and J.P. Harrison, Engineering Rock Mechanics, 1st edition, Elsevier Science, 1997. 

[8] K. Kasama and A.J. Whittle, Bearing capacity of spatially random cohesive soil using numerical limit 

analyses, J Geotech Geoenv Eng, ASCE, 137 (11), 989–996, 2011. 
[9] H. Klammer, M. McVay, D. Horhota, and P. Lai, Influence of spatially variable side friction on single 

drilled shaft resistance and lrfd resistance factors,  J Geotech Geoenv Eng, ASCE, 136 (8), 1114–1123, 

2010. 
[10] N. Moës, J. Dolbow, and T. Belytschko, A finite element method for crack growth without remeshing, 

Int J Numer Methods Eng, 46 (1), 131–150, 1999. 

[11] I.M. Smith, D.V. Griffiths, and L. Margetts, Programming the Finite Element Method (5th eds), John 

Wiley & Sons, Inc., Chichester, NY USA, 2014. 

[12] E.H. Vanmarcke, Random fields: Analysis and synthesis, The MIT Press,Cambridge, MA, 1984. 

[13] D.-J. Youn and D.V. Griffiths, Hydro-Mechanical Coupled Model of Hydraulic Fractures using the 
eXtended Finite Element Method, In ASCE Shale Energy Engineering 2014, Pittsburgh, PA, pp. 230–

238, 2014. 


