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ABSTRACT: Slope stability anaiysis is a classical problem in geotechnical engineering
which is usually performed using limit equilibrium methods that have remained essen-
tially unchanged in decades. The elasto-plastic finite element method is ideally suited
for tackling slope stability problems since it requires no a priori assumptions regarding
the shape or location of the potential failure surface. The paper presents some examples
of slope stability analysis in which the finite element method offers real advantages over
traditional approaches.

INTRODUCTION

The great majority of slope stability analyses performed in geotechnical practice use limit
equilibrium methods that have remained essentially unchanged for decades. Some of the
best known methods include Taylor’s methods (Taylor 1937) , Bishop’s Method (Bishop
1955, Bishop and Morgenstern 1960) and Janbu’s Method (Janbu 1968) . In all these
methods an initial assumption has to made regarding the shape and range of locations of
the potential failure surface followed by an automated computerized search for the failure
surface leading to the lowest “factor of safety”. Essentially the methods return the lowest
upper bound within the set of failure surfaces included in the search. The “factor of
safety” (FOS) is defined (e.g. Duncan 1996) :

Shear strength of soil
Shear stress required for equilibrium

FOS'=

Many slope problems, especially those with reasonable homogeneous soils conditions,
lead to rather simple circular failure surfaces which are conveniently found using the limit
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equilibrium methods described above. Even non-circular failure surfaces can be found
using the limit equilibrium approaches although the user must decide in advance whether
a search for potential failure surfaces of this type is appropriate.

The finite element method for assessing slope stability becomes a superior alternative
to the traditional approaches when awkward geometries and/or non-homogeneous soil
properties are encountered. In these cases, the user of limit equilibrium methods might
initiate a search for an incorrect set of failure surface that led to an unconservative local
minimum that was greater then the “correct” global minimum.

The finite element approach on the other hand will indicate a failure wechanism “nat-
urally” in that the mesh will fail wherever the shear stresses due to the gravity loading
exceed the shear strength of the soil. The FE method places no restriction on the shape
or location of the critical failure surface.

BRIEF DESCRIPTION OF FE METHOD USED

The program is based closely on Program 6.1 in the text by Smith and Griffiths (1988)-the
main difference being the ability to model more realistic geometries and better graphical
output facilities. The programs are for 2-d (plane strain) analysis of elastic-perfectly
plastic soils with a Mohr-Coulomb failure criterion. The programs use 8-node quadrilateral
elements with reduced integration (4 Gauss-points per element) in both the stiffness and
stress redistribution phases of the algorithm. A gravity ‘turn-on’ procedure generates
nodal forces which act in the vertical direction at all nodes. These loads are applied in
a single increment and' generate normal and shear stresses at all the Gauss-points within
the mesh. These stresses are then compared with the Mohr-Coulomb failure criterion.
If the stresses at a particular Gauss-point lie within the Mohr-Coulomb failure envelope
then that location is assumed to remain elastic. If the stresses lie on or outside the failure
envelope, then that location is assumed to be yielding. Global shear failure occurs when
a sufficient number of Gauss-points have yielded to allow a mechanism to develop.

The analysis is based on an iterative Modified Newton-Raphson method called the Vis-
coplastic algorithm (Zienkiewicz et al 1975). The algorithm forms the global stiffness ma-
trix once only with all nonlinearity being transferred to the right hand side. If a particular
zone within the soil mass is yielding, the algorithm attempts to redistribute those excess
stresses by sharing them with neighboring regions that still have reserves of strength.
. The redistribution process is achieved by the algorithm generating self-equilibrating nodal
forces which act on each element that contains stresses that are violating the failure crite-
rion. These forces, being self-equilibrating, do not alter the overall gravity loading on the
finite element mesh, but do influence the stresses in the regions where they are applied.
In reducing excess stresses in one part of the mesh however, other parts of the mesh that
were initially ‘safe’ may now start to violate the failure criterion themselves necessitating
another iteration of the redistribution process. The algorithm will continue to iterate until
both equilibrium and the failure criterion at all points within the soil mass are satisfied
within quite strict tolerances.
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If the algorithm is unable to satisfy these criteria at all yielding points within the soil
mass, ‘failure’ is said to have occurred. Failure of the slope and numerical non-convergence
occur together, and are usually accompanied by a dramatic increase in the nodal displace-
ments. Within the data, the user is asked to provide an iteration ceiling beyond which the
algorithm will stop trying to redistribute the stresses. Failure to converge implies that a
mechanism has developed and the algorithm is unable to simultaneously satisfy both the
failure criterion (Mohr-Coulomb) and global equilibrium.

SOIL MODEL

An elastic-perfectly plastic (Mohr-Coulomb) model has been used in this work consisting
of a linear (elastic) section followed by a horizontal (plastic) failure section.

The soil model used in this study consists of six parameters as shown in Table 1.

Table 1: Six—parameter model

¢

T

Friction angle
Cohesion
Dilation angle
Young’s modulus
Poisson’s ratio
Unit weight
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The dilation angle 9 affects the volume change of the soil during yielding. In this simple
model 1 is assumed to be constant which is unrealistic. It has been shown however, that
the value of v has little influence on the failure loads in collapse problems, especially when
they are relatively unconfined such as in this case. For this reason, it is recommended that
1 is set equal to zero for slope stability analysis which corresponds to a no-volume-change
condition during yield.

The parameters ¢ and ¢ refer to the cohesion and friction angle of the soil. Although a
number of failure criteria have been suggested for use in representing the strength of soil
as an engineering material, the one most widely used in geotechnical practice is due to
Mohr-Coulomb. In terms of principal stresses and assuming a compression-negative sign
convention, the criterion can be written as follows:

U ! ! !
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—c cos¢ (1)

where ¢’ and ¢’ represent the shear strength parameters of the soil and o} and oy the
major and minor principal effective stresses at the point under consideration. The failure
function F' can be interpreted as follows:
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F <0 stresses lie inside the failure envelope (elastic)

F =0 stresses lie on the failure envelope (yielding)

F >0 stresses lie outside the failure envelope (yielding)
and must be redistributed

The unit weight v assigned to the soil is important because it is proportional to the nodal
loads generated by the gravity turn-on procedure.

In summary, the most important parameters in a finite element slope stability analysis
are the unit weight 4 which is directly related to the nodal forces trying to cause failure
of the slope, and the shear strength parameters ¢ and ¢ which measure the ability of the
soil to resist failure.

DETERMINATION OF THE FACTOR OF SAFETY

The Factor of Safety (FOS) of a soil slope is defined here as the factor by which the
original shear strength parameters must be reduced to bring the slope to the point of
failure. The factored shear strength parameters c', and ¢}, are therefore given by:

¢;=c¢|FOS (2)
¢, = arctan( ) (3)

This method has been referred to as the ‘shear strength reduction technique’ (e.g. Matsui
and San 1992) and allows for the interesting option of applying different factors of safety
to the ¢ and tan ¢ terms. In this paper however, the same factor is always applied to
both terms. To find the ‘true’ factor of safety, it is necessary to initiate a systematic
search for the value of FOS that will just cause the slope to fail. This is achieved by the
program solving the problem repeatedly using a sequence of user-specified FOS values.

EXAMPLES OF FINITE ELEMENT SLOPES STABLITY ANALYSIS

The following three examples have been chosen to demonstrate the accuracy and versatil-
ity of the elasto-plastic finite element method in relation to both the determination of the
factor of safety and the indication of the failure mechanism. The first two examples de-
scribe total stress analyses of slopes made of “frictionless” material such as undrained clay
in which ¢, = 0. The third example describes a slope made of an essentially cohesionless
material such as sand in which ¢’ = 0.

Example 1: Undrained clay slope with a foundation layer

This example describes a stability analysis of an undrained clay 2:1 slope (26.6°) resting
on a foundation layer as shown in Figure la. The shear strength of the slope material
(Cu1) has been maintained at a constant value of 5 kPa while the shear strength of the
foundation layer has been varied. The relative size of the two shear strengths has been
expressed as the ratio Cyz/Cu1. The mesh used for the analysis is given in Figure 1b.
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Figure 2 shows the computed factor of safety for a range of Cy3/C\y1 values together with
classical solutions of Taylor (e.g. Craig 1997) for the two cases when Cy2/Cy; = 1 and
Cu2/Cuw1 — oo. There is clearly a change of behavior occurring at Cyy/Cyi = 1.5 as
indicated by the flattening out of the curve. The reason for the transition becomes clear
when the mechanisms are observed at failure for different values of C,;/C,;. Figure 3
shows three such cases indicating that there is a transition from the deep-seated circular
mechanism when Cy2 < 1.5C,; (Figure 3a) to a shallow “toe” mechanism when C,; >
1.5C,; (Figure 3c). The result corresponding to the approximate transition point when
Cuz = 1.5Cy; (Figure 3b) shows an ambiguous situation in which both mechanisms are
trying to form at the same time.
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Fig 1. Example 1: a) Two-layer undrained clay slope and b) finite element
mesh.
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Fig 2. Example 1: FOS as a function of C,3/Cy;.
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Fig 3. Example 1: Failure mechanisms for different values of C,2/C,;.

This examples is similar to the previous one except that this time the second soil layer
takes the form of a thin dipping stratum of weaker material. Figure 4 shows the layout of
the problem and Figure 5 the computed factor of safety for different shear strength ratios.
In addition to the finite element results, Figure 5 shows the computed factor of safety
given by a limit equilibrium package in which circular and then wedge-shaped mechanisms
were assumed. It is clear from the failure mechanisms shown in Figure 6 that the finite
element results detect the change in shape of the mechanism at the transition point that
occurs around Cy2/Cy1 = 0.6. A wrong selection of failure surface shape in the limit

Example 2: Undrained clay slope with a thin weak layer 1
equilibrium approach could lead to an unconservative prediction of FOS. 1
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Fig. 4. Example 2: Undrained clay slope with a foundation layer including a

thin weak layer.
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Fig 5. Example 2: FOS as a function of C,3/Cy;.
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Fig 6. Example 2: Failure mechanisms for different values of C,3/C,;.
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Example 3: Homogeneous slope with almost no cohesion

The final examples is included to emphasize the quite different failure mechanisms that
are observed if the soil strength is derived mainly from friction. Using the same mesh as
in the previous examples, the soil has been given shear strength parameters of ¢ =0.01
kPa and ¢ = 25°. The particular friction angle was chosen to be approximately the same
as the inclination of the slope itself. The finite element analysis gave a very shallow failure
mechanism which might be expected from an “angle of repose” argument and a factor of
safety just greater than unity.

Fig 7. Example 3: Failure mechanism for an essentially cohesionless slope..
CONCLUDING REMARKS

The finite element method in conjunction with a simple elastic- perfectly plastic (Mohr-
Coulomb) stress strain law has been shown to be a reliable and robust method for assessing
the stability of slopes. In particular, the advantage of FE over traditional methods has
been demonstrated in cases where there is ambiguity over the shape and location of the
failure mechanism.
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