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ABSTRACT: By merging elasto-plastic finite element analysis with random field the-

ory, an investigation has been performed into the bearing capacity of undrained clays with

authors called rbear2d. The program computes the bearing capacity of a smooth rigid
strip footing (plane strain) at the surface of a soil with statistically defined shear strength
parameters. The particular study described in this paper concentrates on undrained clay
soil with a variable undrajned shear strength c, (du = 0).

The distribution of the undrained shear strength is assumed to be lognormal with the
following three parameters:
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Mean Boe
Standard Deviation o,
Scale of fluctuation 0,
The Scale of Fluctuation refers to the distance over which the spatially random values
will tend to be strongly correlated in the underlying normal field. Thus, a large value of
0., will imply a smoothly varying field, while a small value will imply a ragged field.

In the parametric studies that follow, the mean has generally been held constant while
the standard deviation and scale of fluctuation are varied. The value of the standard
deviation is conveniently expressed in terms of the dimensionless Coefficient of Variation
defined:

Tc,

s & (1)

Cu

It has been suggested by Lee et al 1983 and Kulhawy et al 1991 that C.0.V.., for actual
soils lies in the range 0.2-0.5. °

For each set of statistics given by C.0.V.., and #.,, Monte-Carlo simulations have been
performed, typically involving 1000 realizations of the random field. Each realization
computes a value of bearing capacity, which in turn can be analyzed statistically.

Of particular interest in the present study, is the probability that the bearing capacity,
qy, will be less than the deterministic value, g4, that would be obtained assuming a
homogeneous soil with undrained shear strength everywhere equal to the mean value,

Hey-

Theoretically, a smooth strip footing on a homogeneous undrained clay of shear strength
He, Will have a bearing capacity given by the Prandtl solution, where:

Qdet = Nc Hey (2)
N, = 514 (3)

BRIEF DESCRIPTION OF FE METHOD USED

The bearing capacity analysis uses an elastic-perfectly plastic stress-strain law with a
Tresca failure criterion. Plastic stress redistribution is accomplished using a viscoplastic
algorithm. The program uses 8-node quadrilateral elements and reduced integration in
both the stiffness and stress redistribution parts of the algorithm. The theoretical basis
of the method is described more fully in Chapter 6 of the text by Smith and Griffiths
(1998). To download the source code for the (deterministic) bearing capacity program
p60.£90, see web site:

http://magna.Mines.EDU/fs_home/vgriffit/3rd_ed/chap6/
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The model incorporates three parameters; Young’s modulus (E), Poisson’s ratio () and
the undrained shear strength (c,). The program rbear2d allows for statistical distribu-
tions of all three parameters, however in the present study, £ and v are held constant
while only ¢, is randomized. A typical mesh is shown in Figure 1.
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Fig 1. Mesh used in probabilistic bearing capacity analyses

The mesh consisted of 1000 elements, with 50 columns and 20 rows. Each element was a
square of side length 0.1 units. The strip footing occupied 10 elements, giving a footing
width of 1 unit.

At each realization of the Monte-Carlo process, the footing is incrementally displaced
vertically (é,) into the soil and the sum of the nodal reactions (g) back-figured from the
converged stress state. When the sum of the nodal reactions levels out to within quite
strict tolerances, “failure” is said to have occurred and the sum of the nodal reactions is
considered to be the “bearing capacity” (gs) of that particular realization.

BRIEF DESCRIPTION OF THE OF THE RANDOM FIELD MODEL

The undrained shear strength is obtained through the transformation

Cy; = exp{fimc, + Oinc, Gi} (4)

in which ¢,, is the undrained shear strength assigned to the i* element, g; is the local
average of a standard Gaussian random field, g, over the domain of the i** element, and
Minc, and oy, , are the mean and standard deviation of the logarithm of ¢, (obtained from
the ‘point’ mean and standard deviation y., and o).

The LAS technique (Fenton 1990, Fenton and Vanmarcke 1990) generates realizations of
the local averages g; which are derived from the random field g having zero mean, unit
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variance, and a spatial correlation controlled by the scale of fluctuation, f.,. As the scale
of fluctuation goes to infinity, g; becomes equal to g; for all elements i and j - that is the
field of permeabilities tends to become uniform on each realization. At the other extreme,
as the scale of fluctuation goes to zero, g; and g; become independent for all i # j — the
soil’s undrained shear strength changes rapidly from point to point.

In the two-dimensional analyses presented in this paper, the scales of fluctuation in the
vertical and horizontal directions are taken to be equal (isotropic) for simplicity. Fenton
(1999) examined CPT data in relation to random field modeling, however the actual
spatial correlation structure of soil deposits is not usually well known, especially in the
horizontal direction (see e.g. DeGroot and Baecher 1993, Marsily 1985, Asaoka and Grivas
1982). In this paper therefore, a parametric approach has been employed to study the
influence of 0., .

The input to the random field model therefore comprises of the three parameters (y.,, 0., , ., )-
Based on these underlying statistics, each of the 1000 elements is assigned an undrained
shear strength from a realization of the undrained shear strength random field. A series of
realizations are generated, each with the same underlying statistics, but each having quite
different spatial undrained shear strength patterns. The analysis of sequential realizations
and the accumulation of results comprises a Monte-Carlo process. In the current study,
1000 realizations were performed for each case considered.

Following Monte-Carlo simulation of each parametric combination, 1000 values of the
bearing capacity q; were obtained, which were then analyzed statistically to give the mean,
standard deviation and probability of low values that might lead to an unconservative
design based on the mean value.

The plane strain model used herein implies that the out-of-plane scale of fluctuation is
infinite - soil properties are constant in this direction. This is clearly a deficiency, however
previous studies by the authors (Griffiths and Fenton 1997) involving seepage through two-
and three-dimensional random fields has indicated that the difference may not be very
great. The role of the third dimension is an area of ongoing research by the authors.

PARAMETRIC STUDIES

Analyses were performed using the mesh of Figure 1 with the parameters taking the
following values:

., = 05,1,2 4,8, 0o (5)
C.OV., 0.125, 0.25, 0.5, 1, 2, 4, 8

Il

Load/deformation results for 10 realizations are shown in Figure 2 for the case when
0., =1 and C.0.V., = 1. The load has been non-dimensionalized by dividing the footing
stress (q) by the mean undrained shear strength y.,. The bold vertical line corresponds
to the Prandtl solution of N, = 5.14, which gives the theoretical bearing capacity factor
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of a homogeneous soil. It is clear that the majority of the computed bearing capacity

values fall below the Prandtl value. This trend will be confirmed in all the results shown
in this paper.
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Fig 2. Typical load/deformation curves corresponding to different realizations

in the bearing capacity analysis of an undrained clay with 6., = 1 and C.0.V.,, =
| &

Figure 3 shows a typical deformed mesh at failure with a superimposed greyscale in which
lighter regions indicate stronger soil and darker regions indicate weaker soil. It is clear in

this case that the weak (dark) region near the ground surface to the right of the footing
has triggered a quite non-symmetric failure mechanism.

Fig 3. Typical deformed mesh and greyscale at failure with 0., = 1. The darker
regions indicate weaker soil
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The shape of the mechanism is emphasised further by the plot of displacement vectors
for the same realization shown in Figure 4.
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Fig 4. Displacement vectors at failure for the same case shown in Figure 3.
The non-symmetric shape of the failure mechanism is clearly visible.

Following each Monte-Carlo simulation, the corresponding bearing capacity value, gy,
was non-dimensionalized by dividing by the mean undrained shear strength ., of the
underlying distribution as shown in equation (5)

(6) |

Fig 5. Mean bearing capacity factor puy, as a function of undrained shear
strength statistics, 0., and C.0.V.,.
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Figure 5 shows how the mean bearing capacity factor ux, varies with 6., and C.0.V..,.
The plot confirms that for low values of C.0.V.., un, tends to the deterministic Prandtl
value of 5.14. For higher values of C.0.V..,, however, the mean bearing capacity factor
falls steeply, e.g. when 6., = 0.5 and C.O.V.., = 4, uy, value is less than unity-more
than five times smaller than the Prandtl value! The inflience of 6., is more subtle, at
least for the range considered in this paper. As 6., is increased, implying greater spatial
correlation of shear strength within the soil, the fall in py, becomes less pronounced.

In the limit, when 6., = oo, each realization of the Monte-Carlo process is essentially
analyzing a homogeneous soil, albeit with properties varying from one realization to the
next. In this case, un, = 5.14 since the computed distribution of bearing capacity will be
identical to the underlying lognormal distribution of ¢,, multiplied by 5.14.

Figure 6 shows the influence of 0., and C.0.V.., on the standard deviation of the bearing
capacity factor, oy,.
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Fig 6. Standard deviation of the bearing capacity factor oy, as a function of
undrained shear strength statistics, 6., and C.0.V..,.

The plots indicate that as C.0.V.., increases in the range 0 — 2, oy, also iﬁcreases,
however for C.0.V.., > 2 a reduction of o, is observed. This interesting result is currently
under further investigation.

As 0., is increased, oy, also increases, although there is a limiting value of oy, given by
the 0., = oo line which has the equation:

on, =514 C.0.V.,, (7)
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PROBABILISTIC INTERPRETATION

Following Monte-Carlo simulations for each parametric combination of input parameters
(0., and C.0.V..,), the suite of computed bearing capacity factor realizations was plotted
in the form of a histogram, and a “best-fit” lognormal distribution superimposed as shown
in Figure 7.
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Fig 7. Histogram and lognormal fit for the computed bearing capacity factors
when 0., = 2 and C.0.V.,, = 1. The lognormal function has the properties
HinN. = 1.025 and OlnN. = 0.588.

Also shown on Figure 7 as a vertical line, is the Prandtl solution corresponding to N. =
5.14. Since the lognormal fit has been normalized to enclose an area of unity, the area
to the left and right of this solution gives, respectively, the probability that the actual
bearing capacity factor will be less than or greater than the Prandtl value.

From a design viewpoint we may be interested in the probability that the bearing capacity
factor will be less than the Prandt] solution. Let this quantity be p(N. < 5.14) , and given
by the equation:

p(N. < 5.14) =@ (M) (8)

OIn N,
where @ is the cumulative normal function.

For the particular case shown in Figure 7, equation 8 gives p(N. < 5.14) = 0.851, hence
there is an 85% chance the actual bearing capacity factor will be less than the Prandtl
value of N, = 5.14.
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Figure 8 gives a summary of p(N, < 5.14) for a range of values of 6., and C.0.V..,. The
figure indicates that as C.0.V.., 50, p(N, < 5.14) = 0.5. This trend is to be expected,
because for very low C.0.V.., values, the distribution becomes narrow and “centered” on
the deterministic result. There is thus an equal chance of the computed bearing capacity
factor lying on either side of the Prandt] solution. As C.0.V.., is increased however, the
probability of obtaining an underestimation of the Prandtl solution increases rapidly for
low values of 0., and less rapidly for higher values of 0c,. For example, it is virtually
certain that the computed bearing capacity will underestimate Prandtl’s solution when
0., = 0.5 and C.0.V.,, = 2.

The result corresponding to the special case of 0., = oo is also indicated in Figure 8. For
a lognormal underlying distribution, the equation of this line is given by:

p(N, < 5.14) = Q(%(ln(l +C.OVLYY ©)

p(N, < 5.14)
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Fig 8. Graph showing the probability p(N, < 5.14) that the actual bearing
capacity factor will be lower than the Prandtl solution for a soil with different
values of 4., and C.0.V.,,

Figure 8 indicates that soil shear strength variability always reduces the expected bearing
capacity of a strip footing supported by an undrained clay. This figure gives an over-
pessimistic impression however, by not incorporating the variance of the computed bearing
capacity distribution. Even an essentially deterministic analysis with C.0.V.., — 0 would
indicate that there was still a 50% chance of the bearing capacity being below the Prandtl
value. It is more useful therefore, to indicate the probability that a factored Prandt]
solution might be underestimated.
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Figure 9 takes this into account for the case of 6., = 1 by indicating the probability,
p(N. < 5.14/F), that the computed bearing capacity factor will be even less than the
Prandt] solution divided by a “safety factor” F', where F' > 1.
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Fig 9. Graph showing the probability p(N. < 5.14/F) that the actual bearing
capacity factor will be lower than the Prandtl solution reduced by a “safety
factor” F for a soil with 0., = 1.

The results shown in Figure 9 indicate that quite high factors are required to reduce the
probability to acceptable levels, even for soils with low C.0.V.., values. As an example,
for a soil with C.0.V.., = 0.5, a factor of safety of 3 would be required to virtually
eliminate any probability of bearing failure at loads lower than the design value.

CONCLUDING REMARKS

The paper has shown that soil strength heterogeneity based on an underlying lognormal
distribution can significantly reduce the expected bearing capacity of a strip footing on
undrained clay.

The following more specific observations have been made:

1. As the soil strength C.0.V. increases, the mean bearing capacity decreases. The rate
of decrease of the mean bearing capacity lessens as the scale of fluctuation increases.

2. As the soil strength C.0.V. increases, the standard deviation of the bearing capacity
initially increases but later decreases, exhibiting a maximum that requires further
investigation. Increasing the scale of fluctuation always has the effect of increasing
the standard deviation of the bearing capacity.
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3. From a probabilistic viewpoint, there will always be a greater than 50% chance that
the actual bearing capacity will be less than the Prandtl solution. The smaller the
scale of fluctuation the greater this probability becomes.

4. By investigating the role of a safety factor applied to the Prandt] solution, it was
observed that quite high factors are needed to reduce the probability of design
“failure” to negligible levels. These results explain in probabilistic terms, why such
high factors of safety are needed in the design of foundations against bearing capacity
failure.
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