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Abstract
This paper explains how computer algebra systems can be a valuable aid in

the development of finite element software. Several examples used recently
in the subroutine library of an extensive suite of finite element programs and
an associated textbook are described.

Introduction

“The major purpose of a Computer Algebra System (CAS) is to manip-
ulate a formula symbolically using the computer. For example, expanding,
factorizing, root finding, or simplifying an algebraic polynomial are some of
the common uses of CAS. However, many systems listed here have gone far
beyond that and also offer other functionalities like numerical calculation,
graphics, and simulations.”

The above definition was taken from a “Scientific Applications of Linux”
web site (e.g. www.sai.msu.su/sal/A/1/) which provides a useful summary
of the numerous CAS packages available. These packages range from com-
mercial to Shareware to GPL (General Public License) software.

This paper discusses how CAS have been used recently to generate some
Fortran subroutines that are part of an extensive suite of finite element pro-
grams described in detail by Smith and Griffiths (2004)1.

The CAS used in the present work is Maple (www.maplesoft.com) which
reflects the experience of the author, however the developments described
in this paper could certainly have been achieved on other packages. A vi-
tal attribute of any CAS to be used for finite element sofware development
however, is that it has the option of outputting complicated algebraic expres-
sions directly into the Fortran language. This feature avoids the possibility
of coding errors involving lengthy algebraic expressions, and largely removes
the need for simplification routines in the CAS.

The strain-displacement matrix

Nearly all finite element programs for solid mechanics applications involve
the generation of the element stiffness matrix. In 2-d solid elasticity, the
element matrix can be written in the familiar form:

1The 4th edition of this textbook is due for publication in the latter half of 2004. Many
of the subroutines described are also to be found in the 3rd edition published in 1998



[km] =
∫ ∫

[B]T [D] [B] dx dy (1)

where [B] is the strain-displacement matrix containing derivatives of shape
functions with respect to x and y, and [D] is the stress-strain matrix con-
taining Young’s modulus E and Poisson’s ratio ν.

with(codegen,fortran); with(linalg);

deriv:=array(1..2,1..8):der:= array(1..2,1..8):

coord:=array(1..8,1..2):jac:= array(1..2,1..2):

jac1:=array(1..2,1..2):

########### coord are the nodal (x,y) coordinates

coord[1,1]:=x1: coord[1,2]:=y1: coord[2,1]:=x2: coord[2,2]:=y2:

coord[3,1]:=x3: coord[3,2]:=y3: coord[4,1]:=x4: coord[4,2]:=y4:

coord[5,1]:=x5: coord[5,2]:=y5: coord[6,1]:=x6: coord[6,2]:=y6:

coord[7,1]:=x7: coord[7,2]:=y7: coord[8,1]:=x8: coord[8,2]:=y8:

########### terms closely related to local coordinates (xi,eta)

etam:=(1-eta): etap:=(1+eta): xim :=(1-xi): xip :=(1+xi):

########### shape function derivatives with respect to (xi,eta)

der[1,1]:=etam*(2*xi+eta)/4: der[1,2]:=-etam*etap/2:

der[1,3]:=etap*(2*xi-eta)/4: der[1,4]:=-etap*xi/4:

der[1,5]:=etap*(2*xi+eta)/4: der[1,6]:= etap*etam/2:

der[1,7]:=etam*(2*xi-eta)/4: der[1,8]:=-etam*xi/4:

der[2,1]:=xim*(xi+2*eta)/4: der[2,2]:=-xim*eta/4:

der[2,3]:=xim*(2*eta-xi)/4: der[2,4]:= xim*xip/2:

der[2,5]:=xip*(xi+2*eta)/4: der[2,6]:=-xip*eta/4:

der[2,7]:=xip*(2*eta-xi)/4: der[2,8]:=-xim*xip/2:

########### conversion to derivatives with respect to (x,y)

jac:=multiply(der,coord):jac1:=inverse(jac):

deriv:=multiply(jac1,der):

########### Fortran output

fortran(deriv,optimized);

Figure 1: Maple code to generate shape function derivatives in Fortran for a
plane 8-node quadrilateral

Typically, finite element codes generate the [B] matrix at the element inte-
grating points, firstly for the purposes of generating the stiffness matrix from
(1) and secondly for obtaining strains once the displacements have been com-
puted.

Figure 1 shows a typical Maple code for generating the derivative terms
needed for [B] matrix at any local coordinate (ξ, η) given as input for a
general 8-node quadrilateral element.

The program essentially mimics the coding that would be followed in a



conventional finite element program. The CAS performs everything symbol-
ically however, so the resulting exact expressions can be very long indeed.
For example, a typical term in the [B] matrix such as the derivative ∂N1/∂x
as a function of the 8 nodal (x, y) coordinates and the local coordinate (ξ, η)
occupies well over 100 continuous lines of output. Simplification and factor-
ization routines are available in most CAS packages, however in the author’s
experience these are often not as “intelligent” as one might wish.

Problems relating to the length of the expressions, particularly the possi-
bility of typographical errors in conversion, can be largely overcome by re-
questing the output to be formatted directly into a high level programming
language such as Fortran. This option has been requested in the example
shown in Figure 1 by the command with(codegen,fortran), and the out-
put itself is generated by the command fortran(deriv,optimized). In this
example, all 16 derivative terms can by described in about 300 lines of For-
tran. With some limited simplification of terms, this subroutine2 is given as
bee8.

The stiffness matrix of general quadrilaterals

Analytical expressions for the stiffness matrix of a general quadrilateral
based on (1) have proved more problematic, especially for high order and 3-d
elements. The main difficulty appears to be the complexity of the determi-
nant of the Jacobian matrix in the denominator of the integrands. Several
authors have tackled this problem, especially for low order elements. Babu
and Pinder (1984) and Rathod (1988) developed exact expressions for 4-node
quadrilaterals which led to logarithmic terms. Alternative formulations were
proposed that led to series expansions. Yew et al.(1995) developed closed
form integration formulas for “mixed” finite elements noting that these ele-
ments avoided entirely the need for the Jacobian determinant denominator.
Videla et al.(1996) used the Derive software package to present explicit formu-
las for the stiffness matrix of a plane 4-node elastic element. Very favourable
accuracy and timing comparisons were made with numerically integration
formulations, especially for distorted elements. In spite of these develop-
ments, the advantages of numerical integration are hard to deny (e.g. Okabe
1981).

Griffiths (1994) presented semi-analytical formulations for the stiffness ma-
trix of a general 4-node element, by symbolically performing conventional
Gauss-Legendre quadrature using 4 integrating points per element. This
approach is used by Smith and Griffiths(2004) in the subroutine stiff4.
Griffiths (1993) and Griffiths and Mustoe(1995) continued this theme by
considering symbolic expressions based on selective reduced integration (4

2See the Summary section for the web location of this and other subroutines mentioned
in this paper.



integrating points for deviatoric and 1 integrating point for the volumetric)
of a general 4-node element. This approach is recommended in order to
avoiding “locking” as ν → 0.5 in low-order elements. These semi-analytical
approaches gave identical results to those obtained using conventional numer-
ical integration, but ran significantly faster. Using the same approach, Car-
doso(1995) developed the general straight-sided 8-node plane-strain element
stiffness matrix symbolically based on “reduced” integration (4 Gauss-points
per element), available as subroutine stiff8.

It is generally accepted that 4-point Gauss-Legendre integration is “accu-
rate enough” for a plane 4-node quadrilateral element providing it is not too
distorted. Consider the general quadrilateral test element shown in Figure 2.

Figure 2: Four node planar test element

Using the conventional approach, if we integrate the term k11 of the element
stiffness matrix using a gradually increasing number of integrating points
(nip), convergence is rapidly obtained and nip=4 gives a good result as
shown in Table 1.

Table 1. Influence of Gauss-Legendre integration order on stiffness term k11

k11 nip

267.86 1
350.04 4
351.65 9
351.70 16
351.70 25



The shape functions for the 4-node element shown in Figure 2 in terms of
local coordinates (ξ, η) are well known as:

N1 = (1− ξ)(1− η)/4 N2 = (1− ξ)(1 + η)/4
N3 = (1 + ξ)(1 + η)/4 N4 = (1 + ξ)(1− η)/4

(2)

however with symbolic software we can easily develop the shape functions in
Cartesian coordinates. While it is possible to express these quite generally
in terms of nodal coordinates, to avoid length expressions here, we present
the shape functions only for the test element as:

N1 = +
11
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√
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3
x+
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(3)

N3 = +
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N4 = − 4

27

√
144y2 − 456y + 289 + 144x+

4

3
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9
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As a check the shape functions all satisfy the requirement that:

Ni(xj, yj)

{
1 i = j
0 i 6= j

and
4∑

i=1

Ni = 1 (4)

Although these expressions appear highly nonlinear, they all reduce to linear
functions, and the square root term disappears when the equation of any of
the four sides is substituted. The benefits of local coordinates and numerical
integration of stiffness become obvious if we look at the actual function to be
integrated over the area of the quadrilateral region. Considering again the
k11 term, we get for the plane-strain element shown in Figure 2:

k11 =
∫ ∫ Area

f(x, y) dx dy (5)

where, making the substitution d = 144y2 − 456y + 144x+ 289, we get,

f(x, y) = 40000(54751+(924y−2849)
√
d+21312y2−67488y+12600x)/(1053d)

(6)
Lichti(2003) discussed evaluation of (5) by a “naive” superposition strategy

involving rectangles and right-angled triangles as shown in Figure 3. This
has been completed by the author using the Maple program given in Figure
4.

The analytical expression for the stiffness term is given by:

k11 =
100

85293
{120467600 ln 2 + 46766500 ln 5− 10747825 ln 11− 44996875 ln 17}

−19302500

3159
= 351.69944 (7)



Figure 3: Superposition of regions for integration of test

The stiffness matrix of rectangular quadrilaterals

Analytical evaluation of the stiffness matrix of rectangular quadrilateral
elements is considerably easier than for general quadrilaterals. When eval-
uating the integrals of (1), the shape functions can be formulated in Carte-
sian coordinates and the terms of the [B] matrix can be obtained by direct
differentiation. Furthermore, integration can proceed by separation of the
variables with fixed limits in the x− and y−directions as shown in Figure 5
and equation (8).

[km] =
∫ b

0

∫ a

0
[B]T [D] [B] dx dy (8)

CAS are a useful tool for generating shape functions of finite elements.
For example, the shape functions for a “new” elements such as the 14-node
brick described by Smith and Griffiths(2004) were isolated using CAS. Here
we demonstrate the derivation of a typical shape function of a rectangular
8-node elements in Cartesian coordinates. The terms of a typical shape
function can be obtained from Pascal’s triangle as follows:



> restart; d:=144*y^2-456*y+144*x+289:

> fxy :=40000*(54751+(924*y-2849)*sqrt(d)+

> 21312*y^2-67488*y+12600*x)/(1053*d):

> r1:=int(int(fxy,x=1/4..1),y=1/4..3/4): # r1 main rectangle

> t1:=int(int(fxy,x=y/3..1/4),y=1/4..3/4): # t1 left triangle

> t2:=int(int(fxy,x=3*y-2..1),y=3/4..1): # t2 top triangle

> t3:=int(int(fxy,x=1..-2*y/3+5/3),y=1/4..1):# t3 right triangle

> t4:=int(int(fxy,x=0..6*y),y=0..1/4): # t4 lower (big) triangle

> t5:=int(int(fxy,x=0..y/3),y=0..1/4): # t5 lower(small) triangle

> k11:=r1+t1+t2+t3+t4-t5: k11:=evalf(%);

k11 := 351.69944

Figure 4: Maple code to generate analytical k11 term for the test element

N1 = c1 + c2x+ c3y + c4x
2 + c5xy + c6y

2 + c7x
2y + c8xy

2 (9)

followed by the setting up and solution of 8 simultaneous equations from (4)
for the ci coefficients. A typical Maple program is shown in Figure 6.
Leading to the shape function,

N1 = 1− 3x

a
− 3 y

b
+

2x2

a2
+

5x y

a b
+

2 y2

b2
− 2x2 y

a2 b
− 2x y2

a b2
(10)

A similar approach can be used for the other 7 shape functions of this element.
Although the exact stiffness matrices of both 4- and 8-node rectangular

elements are easily evaluated analytically from (8), it is well known that
reduced numerical integration in the case of the 8-node element can lead
to better performance (e.g. Zienkiewicz and Taylor 1989) . In the Smith
and Griffiths(2004) text, CAS have been used to evaluate the exact stiffness
matrix of a 4-node rectangular element by analytical integration and the
“reduced” stiffness matrix of a rectangular 8-node element using 4 Gauss
points. The coding for both these cases can be found in subroutine rect_km.
For example, the exact 4-node rectangle gives,

k11 =
1

6

E

(1 + v) (1− 2 v)

{
a

b
(1− 2 v) +

2b

a
(1− v)

}
(11)

and the “reduced” integration 8-node rectangle gives,

k11 =
5

18

E

(1 + v) (1− 2 v)

{
a

b
(1− 2 v) +

2b

a
(1− v)

}
(12)

The similarity of the equations is striking even though they involve quite
different elements and integration strategies. The stiffness term k11 in both
cases is dependent on the aspect ratio a/b of the element, however some



Figure 5: A rectangular 8-node element

> restart;

> N1:=c1+c2*x+c3*y+c4*x^2+c5*x*y+c6*y^2+c7*x^2*y+c8*x*y^2:

> eq1:=subs(x=0, y=0 ,N1)=1: eq2:=subs(x=0, y=b/2,N1)=0:

> eq3:=subs(x=0, y=b, N1)=0: eq4:=subs(x=a/2,y=b, N1)=0:

> eq5:=subs(x=a, y=b ,N1)=0: eq6:=subs(x=a, y=b/2,N1)=0:

> eq7:=subs(x=a, y=0, N1)=0: eq8:=subs(x=a/2,y=0, N1)=0:

> eqs:={eq1,eq2,eq3,eq4,eq5,eq6,eq7,eq8}: vars:={c1,c2,c3,c4,c5,c6,c7,c8}:

> solve(eqs,vars);

Figure 6: Maple code to generate shape function N1 for an 8-node rectangular
element

off-diagonal terms of [k], when generated using a CAS, can be shown to be
entirely independent of the dimensions of the element. For example, the
exact 4-node rectangle gives,

k12 =
1

8

E

(1 + v) (1− 2 v)
(13)

and the “reduced” integration 8-node rectangle gives,

k12 =
17

72

E

(1 + v) (1− 2 v)
(14)



The conductivity matrix

This element matrix is used to model steady state and transient analyses
in fluid or heat flow. The matrix is analogous to the stiffness matrix in solid
analysis and is defined:

[kc] =
∫ ∫

[T]T [K] [T] dx dy (15)

The similarity with (1) is obvious. Matrix [T] is analogous to [B] in solid
analysis and holds derivatives of shape functions with respect to x and y. The
matrix [K] is analogous to [D] in solid analysis and holds material conductiv-
ity properties. The development of “analytical” formulations of [kc] follows
essentially the same logic as for the stiffness matrix [k] discussed previously.
If we consider a 4-node rectangular element, exact integration of [kc] from
(15) is easily achieved by direct integration and separation of variables. For
general 4-node quadrilateral elements, analytical solutions for [kc] are also
possible using a similar strategy to that described earlier for stiffness leading
to (7). Numerical integration using 4 Gauss points is undoubtedly simpler
however, and generally considered to be “accurate enough”.

Table 2 shows the influence of increasing the order of numerical integration
(nip) on term kc11 for the test element shown in Figure 2 assuming isotropic
conductivity properties equal to unity.

Table 2. Influence of Gauss-Legendre integration order on conductivity
term kc11

kc11 nip

0.51786 1
0.63460 4
0.63606 9
0.63609 16
0.63609 25

Subroutine seep4 has been developed using CAS to compute [kc] based on 4
Gauss points. The methodology used to generate this subroutine is essentially
the same as that used to develop stiff4 in solid elasticity.

The plastic matrix

In nonlinear analysis of elasto-plastic materials involving a yield function
F , a potential function Q and an elastic stress-strain matrix [De], stresses
are computed using a plastic constitutive matrix given by:



[Dp] =

[De]

{
∂Q

∂σ

}{
∂F

∂σ

}T

[De]{
∂F

∂σ

}T

[De]

{
∂Q

∂σ

} (16)

Subroutines based on the analytical forms of the plastic matrix have been
developed for both plane-strain and 3-d conditions using CAS for the case of
materials with failure criteria described by von Mises (subroutine vmdpl):

F = σ̄ −
√

3cu (17)

where cu is the undrained shear strength, and Mohr-Coulomb (subroutine
mcdpl):

F = σm sinφ+ σ̄

(
cos θ√

3
− sin θ sinφ

3

)
− c cosφ (18)

Q = σm sinψ + σ̄

(
cos θ√

3
− sin θ sinψ

3

)
− c cosψ (19)

where φ and c are the friction angle and cohesion of the soil, and ψ is the
dilation angle.

The terms σm, σ̄ and θ are stress invariants defined:

σm =
σx + σy + σz

3
(20)

σ̄ =
1√
2

[
(σx − σy)2 + (σy − σz)2 + (σz − σx)2 + 6τ 2xy + 6τ 2yz + 6τ 2zx

]1/2
(21)

θ =
1

3
arcsin

(−27J3
σ̄3

)
(22)

where
J3 = sxsysz − sxτ 2yx − szτ 2zx − szτ 2xy + 2τxyτyzτzx (23)

and

sx =
1

3
(2σx − σy − σz) etc. (24)

Summary of CAS generated subroutines for finite element analysis

Table 3 shows a list of Fortran 95 subroutines described in the text by
Smith and Griffiths (2004) and available for download from web site:
www.mines.edu/fs_home/vgriffit/4th_ed/source/library/main/



Table 3. CAS generated subroutines

Name Function

bee8 Returns the “analytical” form of the [B] matrix
for general plane 8-node elements

mcdpl Returns the plastic stress-strain matrix [Dp]
for a Mohr-Coulomb material

rect_km Returns the stiffness matrix [k] of a rectangular plane-strain
4-(exact) or 8-node (reduced) quadrilateral element

seep4 Returns the “analytical” conductivity matrix [kc]
for a general plane 4-node element based on 4 Gauss points.

stiff4 Returns the “analytical” stiffness matrix [k] of a
general plane-strain 4-node quadrilateral element
based on 4 Gauss points.

stiff8 Returns the “analytical” stiffness matrix [k] of a
general plane-strain 8-node quadrilateral element
based on 4 Gauss points.

vmdpl Returns the plastic stress-strain matrix [Dp]
for a von Mises material.

Concluding Remarks

Computer Algebra Systems (CAS) offer great potential for generation of
engineering analysis software. Furthermore, the analytical expressions pro-
duced by CAS, can give insight into the nature of finite element terms that
are usually manipulated numerically, and rarely seen in closed form. This
paper has described some applications of CAS that were used in the develop-
ment of a suite of finite element programs developed by Smith and Griffiths
(2004). In most cases the Fortran code was generated directly by the CAS
from the algebraic expressions, which were occasionally lengthy and com-
plex. Examples covered include strain-displacement matrices, quadrilateral
element stiffness matrices (rectangular and general), conductivity matrices
and plastic matrices for nonlinear analysis. The source code for all the For-
tran 95 subroutines described in this paper can be downloaded from the
author’s web page. The work described in this paper is a step towards the
goal of creating a comprehensive library of CAS-generated software, avail-
able in the public domain covering a wide range of FE element types and
applications.
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