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Abstract. The classical problem of a beam on an elastic foundation has long been of practical 
interest to geotechnical engineers, because it provides a framework for computing deflections, 
not only of horizontally oriented foundations, but also of vertically oriented laterally loaded 
piles. In both cases the soil is modeled as a system of elastic springs which can be calibrated 
to model the stiffness of the soils adjacent to the beam (or pile). In this study the influence of 
spatially random foundation stiffness on deformations of transversely loaded homogeneous 
beams is investigated. The approach involves a combination of finite element analysis, 
random field theory and Monte-Carlo simulations. The objective is to quantify the influence 
of statistically defined foundation stiffness (mean, standard deviation and spatial correlation 
length) on the mean and standard deviation of the beam deflection. This then leads naturally 
to a probabilistic interpretation in which, for example the probability of the top deflection of a 
laterally loaded pile exceeding some design threshold can be quantified.  
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1. INTRODUCTION 
 
       Analysis of a beam on an elastic foundation is a classical problem first introduced by 
Winkler in the 19th century and later developed by many other investigators, most notably by 
Hetenyi [1]. In this paper we consider the response of a beam on a foundation with a spatially 
random stiffness. Similar studies have been performed using stochastic finite element 
methods (e.g. Ramu and Ganesar [2], Zhang and Ellingwood [3]) however in this study we 
will use the random finite element method (RFEM) first developed by Griffiths and Fenton 



 

 

[4] and Fenton and Griffiths [5]. In this method, conventional finite element analysis of a 
beam on an elastic foundation (e.g. Smith and Griffiths [6]) is combined with random field 
generation (e.g. Fenton and Vanmarcke [7]) and Monte-Carlo simulations to develop output 
statistics of quantities such as the beam deflection. For example, in the analysis of a laterally 
loaded pile analysis in a spatially random soil, we might be interested in estimating the 
probability of the top deflection exceeding some allowable design value. This can be 
quantified by counting realizations that give excessive deflections or by fitting a probability 
density function to the output. 
       We start the paper by applying the finite element method to a simple analysis of a 
laterally loaded pile (e.g. Reese and Van Impe [8], Prakash and Sharma [9]) involving a soil 
of constant foundation stiffness which can be compared with the analytical solutions of [1]. 
The equation to be solved is 
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EI = flexural rigidity of the beam, k = foundation stiffness, y = deflection and q = distributed 
loading. 

 
Example Problem: A pile of length 12.2L = m is driven into clay. The foundation stiffness is 

5774=k  kPa and the pile stiffness is 9492=EI  kNm2. The pile is subjected to a lateral top 
load of 28=P  kN. The characteristic length of the pile is given by Lλ , where 4 / 4k EIλ = . 
A “short beam” is given by 4λ π≤L , a “medium length beam” by 4π λ π< ≤L and a “long 
beam” byλ π>L . The pile problem under consideration here has 7.618Lλ = so it may be 
considered “long”. 

 
The deflection at the top of the pile by Hetenyi’s analytical solution is given by 
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       The finite element solutions modeled with 2, 4 and 8 equal length elements are shown in 
Table 1. Very good agreement is obtained with the analytical solution, even using the coarsest 
dicretization. Figure 1 shows the computed deflected shape by finite elements (8 elements) 
compared with the solution from [1] over the whole length of the pile. 

 
Figure 1.  Deflected shape of pile from finite element and analytical solutions. 



 

 

Table 1. Top deflection by finite element program and analytical solution (mm). 
 

FE solution, number of elements 
Hetenyi 

2 4 8 
6.05 5.82 5.92 6.04 

 
2. RANDOM FIELDS 
 
       In this section we introduce spatially random soil adjacent to the pile. This is intended to 
model highly variable soil typical of some sites in which the soil stiffness is characterized by 
a mean, a standard deviation and a spatial correlation length. The Random Finite Element 
Method (RFEM), which combines finite element analysis with random field theory will be 
used in conjunction with Monte-Carlo simulations and has already been applied to several 
areas of geotechnical engineering by the authors [10]. The pile is divided into 100 elements 
and a random field of foundation stiffness is mapped onto the mesh taking full account of 
local averaging. Each element is assigned a k  value which varies from one element to the 
next. The random field is defined by three parameters, the mean ( )µk , the standard deviation 

( )σ k  and the spatial correlation length ( )lnθ k . A convenience dimensionless measure of the 
variability of data is given by the coefficient of variation, defined σ µ=k k kV . The spatial 
correlation length is the distance over which the properties tend to be spatially correlated. A 
small spatial correlation length implies rapidly varying properties, while a large spatial 
correlation length implies gradually varying properties. Two random fields with the same 
mean and standard deviations could have quite different spatial correlation lengths. In the 
current work we have expressed the spatial correlation length in dimensionless form as 

 ln
ln

θ
Θ = k

k L
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It should be noted that in this study, the foundation stiffness k  is assumed to be lognormally 
distributed, so the spatial correlation length is defined with respect to the underlying normal 
distribution of ln k . Figure 2 shows a typical random field of foundation stiffness where dark 
and light regions depict, respectively, stiff and less stiff soil values.   

 
Figure 2. Typical random field of foundation stiffness mapped onto a mesh of 100 elements. 

 
           
3.  VARIANCE REDUCTION OVER A LINE FINITE ELEMENT 
 

The RFEM takes full account of element size in the random field generation and the 
method delivers statistically consistent values of the locally averaged properties. It is assumed 
that the input statistics ( , )µ σk k  are provided at the “point”. For a line finite element of length 

 



 

 

lnαθ k  and a Markov correlation function given by 2τ θρ −= e  it can be shown (e.g. Vanmarcke 
[11]) that the local averaging variance reduction factor is given by 
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where 2 2γ σ σ= kA k and 2σ kA is the variance after local averaging. The variance reduction may 
be evaluated analytically from Eq. 4 to give  
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It may be noted that local averaging affects both the standard deviation and the mean of the 
lognormal parameter.  
 
4.   RESULTS OF RFEM   
 
 The results of RFEM analyses with 5000 Monte-Carlo simulations are now presented, 
based on a range of parametric variations of, kV  and ln kΘ .  In all cases 5774µ =k  kPa. 

 
Figure 3. δµ vs. ln kΘ  for different kV  values 

 

 
Figure 4. δσ  vs.  ln kΘ  for different kV  values 
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It can be noted that both the mean and standard deviation of the top deflection increase with 
increasing values of kV  . They also increase with increasing lnΘ k  for ln 1Θ <k  but tend to 
remain essentially constant for ln 1Θ >k  
 
5.  PROBABILISTIC INTERPRETATION  
 

In order to make probabilistic interpretations from a Monte-Carlo analysis, we can 
either count the number of simulations that exceed the allowable deflection, or make an 
assumption about the probability density function (pdf) that best fits the output values. Since 
the foundation stiffness values were assumed to be lognormal, it seems reasonable to assume 
that the pdf of the top deflection is also lognormal.  Figure 5 shows a histogram based on 
5000 solutions from the RFEM runs compared with a smooth lognormal plot based on 
computed values of the top deflection δ given by δµ  and δσ  values. Although objective 
“goodness of fit” tests can be performed, in the interests of brevity we can note here that the 
lognormal fit seems reasonable. 

 
Figure 5.  Histogram and lognormal fit for a typical set of computed deflection values. 

 
The choice of a lognormal distribution of deflection makes the computation of 

probabilities easily obtained based on standard tables of the standard cumulative distribution 
function. For arguments sake, let us assume that the design has failed if the top deflection 
exceeds 10 mm. Thus for any particular parametric combination of kV  and lnΘ k  we wish to 
estimate [ ]P 10mmδ > . 
 
 
Sample Calculation: 
 

1) For input values 5774 kPaµ =k , 1=kV  and ln 1Θ =k  
2) From Monte-Carlo simulations, 9.27δµ = mm, 6.29δσ = mm  ( 0.679δ =V  

lognormal) 



 

 

3) Obtain parameters of underlying normal distribution of lnδ ,  
2
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where (.)Φ  is the standard cumulative distribution function. 
 

Figure 6 shows results of similar probabilistic calculations for other values of kV  and lnΘ k . 
Probabilities corresponding to 0.2=kV  were negligible so they are not shown. 
 

 
Figure 6. [ ]P 10mmδ > vs. ln kΘ  for different kV  values 

 
 
 
6. CONCLUSIONS 

 
 The paper has described analysis of a laterally loaded pile embedded in a soil with 
statistically defined stiffness. The pile was modeled as a “beam on an elastic foundation” 
using the Random Finite Element Method (RFEM) with the soil stiffness defined by its mean, 
standard deviation and spatial correlation length. Monte-Carlo simulations led to stable output 
statistics of the pile top deflection, from which probabilistic conclusions were reached. A full 
range of parametric solutions were considered involving the spatial correlation length and the 
coefficient of variation of the soil stiffness. The results show that increasing the coefficient of 
variation of the foundation stiffness (with the mean held constant) results in a significant 
increase in mean and standard deviation of pile top deflection. Increasing the spatial 
correlation length of the foundation stiffness also results in increased mean and standard 
deviation of top deflection, although this effect levels out when the spatial correlation length 
approaches the length of the pile itself. When these results were interpreted probabilistically, a 
similar trend was observed. For the test problem, the probability of “design failure”, defined 
as excessive pile top deflection, was as high as 30% for highly variable soil. The program 
developed as part of this study has much potential for further investigations of the response of 
piles in random soils. An important ongoing refinement is to recognize increased stiffness 
with depth within a random framework. 
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