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Abstract. This paper examines the application of direct reliability-based design (d-RBD) to 
shallow foundations subjected to highly eccentric (MVH) loading.  Even though the method can 
account for multiple limit states (ultimate, serviceability, fatigue, etc) as well as design 
optimization, only the ultimate limit state combined with design optimization is considered in this 
paper. The d-RBD design approach involves a Monte Carlo process with an “adequate” number 
of realizations.  Loading and soil shear strength parameters are treated as random variables. 
Design decision parameters such as foundation size and depth are treated as uniformly 
distributed variables. Each Monte Carlo simulation is evaluated against limit state criteria. The 
results of the simulation are then used to calculate conditional probabilities of failure and to 
select the optimal design which meets target reliability indices. The approach is flexible in that it 
offers a choice of combinations of deterministic and random variables, probability distributions 
and calculation models, enabling engineers to exercise judgment without the need to re-write the 
underlying probabilistic models. This paper illustrates the application of the d-RBD procedure to 
the design of shallow foundations supporting utility-scale wind energy converter structures. 
Foundation loads for these structures are highly eccentric, consisting mostly of a large moment 
component.  As shown in this paper, the method can be used directly in the design of such 
foundations. The method can also be used to develop partial material and load factors for design 
code calibrations. 
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1. INTRODUCTION OF THE d-RBD PROCEDURE 
 
 Contemporary design codes, such as Limit State Design (LSD) and Load and Resistance 
Factor Design (LRFD), use partial factors to assign uncertainty separately to material resistance 
and loads. This is a great improvement over classical Allowable Stress Design (ASD) where all 
uncertainty is lumped into one global factor of safety.  Partial factor design methods also have the 
additional advantage of producing designs with known levels of reliability which are consistent 
for the superstructure and its foundation. In comparison, reliability delivered through ASD 
methods is inconsistent across different parts of the structure and is often hard to quantify. 
 
 Factors used in partial factor design methods, also known as Reliability-Based Design 
(RBD) methods, have probabilistic underpinnings. They are calculated using First Order Second 
Moment (FOSM), First Order Reliability Method (FORM), or Monte Carlo Simulation (MCS) 
techniques, [1]. The factors are published in design codes to simplify and harmonize the design 
process across markets and industries. A drawback of this simplification is that it leaves little 
room for extracting benefit from local knowledge or engineering judgment. 
 
 The RBD method presented in this paper, Fig. 1, does not use load or material factors. Loads 
and material parameters affecting the design are modeled as random variables. Design decision 
parameters, such as those associated with geometry, are modeled as uniformly distributed 
variables. After defining the limit states and their associated target reliabilities, Monte Carlo 
Simulations are performed. Each simulation in the MC process involves the generation of the 
various random input variables and computation of the output quantities of interest. When an 
“adequate” number of simulations of the chosen computational model have been performed, 
statistical analysis of the output quantities is performed to identify the optimal realization. The 
optimal realization is the least cost combination of design decision parameters that meets the 
reliability requirements of all enforced limit states. In this design method, risk is modeled 
separately for each load or material parameter and engineering judgment can be applied at any 
step of the process, e.g. in the choice of the random and deterministic variables, in the choice of 
their probability distributions and in the selection of the computational models. Because 
parameters are incorporated as random variables directly, the procedure is termed a direct 
Reliability-Based Design (d-RBD) procedure. The d-RBD approach is essentially the same as the 
“Expanded RBD,” described in [2], with the exception of the procedure’s extension to 
foundations subjected to highly eccentric combined loading. 
 
 This paper describes the application of the d-RBD procedure to the design of shallow 
foundations subjected to combined Moment-Vertical-Horizontal (MVH) loading. A realistic 
example of a shallow foundation supporting a wind turbine is used to arrive at an optimal design 
and to compare results from this procedure to those obtained using state-of-practice methods 
which involve the use of various international and national-level standards and guidelines [3, 4].   
Typically, limit states that are appropriate for this application include ultimate limit states (ULS) 
under normal and abnormal extreme loads, serviceability limit states (SLS) to check for 
minimum foundation stiffness, tolerable settlement/tilt, and fatigue limit states (FLS) to verify 
adequate longevity of the foundation under cyclic loading. In this paper, the d-RBD procedure is 
applied only to the ULS verifying bearing capacity under extreme loading using a total stress 
analysis approach (φu=0). 



 
 

Figure 1- Reliability Based Design Procedure using MCS. 
 
  
 
2. APPLICATION OF THE d-RBD PROCEDURE 
 

As illustrated in Fig. 1, the d-RBD approach is a non-iterative MCS process that yields an 
optimal design meeting the specified reliability requirements. In this section, the three steps 
identified in Fig. 1 are described in more detail and the specifics of the example problem are 
provided. The example problem consists of an octagon-shaped spread foundation used to 
support a utility-scale wind turbine, Fig. 2. The foundation system relies on gravity to resist 
overturning and it must be sized to meet multiple limit states (ultimate, serviceability and 
fatigue).  Typical foundation width for common contemporary turbine sizes ranges from 12 
to over 25 meters and the foundation volume can exceed 500 m3.  
 
  

 
 

Figure 2- Wind Turbine Gravity Base Foundation. 
 
 



 
2.1 Problem Definition 
 
 Problem definition and setup involves identifying the limit states of interest, selecting 
their associated target reliabilities, selecting the computational models for each limit state, 
identifying the random variables and selecting their probability distributions. For the example 
problem, a wind turbine foundation is to be designed for bearing capacity ULS (one limit state). 
The target probability of failure is selected at pT = 0.001 which is equivalent to a target reliability 
index of about β=3.0. The selected bearing capacity computational model is for a total stress 
analysis (φu=0) where the ultimate bearing capacity can be calculated using the Brinch-Hansen 
equation:  
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where su is the undrained shear strength which is treated as a normally distributed random 
variable, and sc and dc are correction factors that are functions of the foundation depth and 
effective dimensions, [5]. 
 

Design decision parameters are treated as uniformly distributed variables to be selected 
randomly from discrete values covering reasonable ranges. In the wind turbine foundation 
example, foundation width, B, and depth, D, are such design decisions. For the octagonal 
foundation, width is the distance between flats. The selected range of foundation width is from 15 
to 24 meters (10 discrete values). The selected range of foundation depth is from 1.8 to 2.6 
meters at 0.2 meter interval (5 discrete values). Selected random variables are the undrained shear 
strength, su, and applied MVH loading. Normal distributions, summarized in Table 1, are 
assumed. Remaining parameters such as unit weights and depth of design water table are 
assumed to be deterministic, even though they can easily be treated as random variables if 
justified. 
 

Table 1. Random & Deterministic Variables 
 

Parameter Distribution Distribution Parameters 
Undrained shear strength, su (kPa) Normal mean=170, std=40  

Load – Moment (kN.m) Normal mean=79400, std=10000 
Load – Vertical (kN) Normal mean=3600, std=400 

Load – Horizontal (kN) Normal mean=890, std=250 
Foundation width (m) Uniform 15 to 24 
Foundation depth (m) Uniform 1.8, 2.0, 2.2, 2.4, 2.6 

Groundwater depth (m) Deterministic 0.0 
Saturated unit weight (kN/m3) Deterministic 21.5 

 
 
2.2 Monte Carlo Simulation 
 
 Monte Carlo Simulation consists of generating a large number of realizations (or 
simulations), nsim, and evaluating each realization using the selected computation models to 
decide if limit states are violated. The total number of failure, nF, is determined. For each 



combination of design decision parameters, the number of violations (failures) is counted. An 
acceptable combination of design decision parameters is a combination that has an acceptable 
conditional failure probability; namely, its conditional failure probability must be less than the 
target failure probability, pT: 
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The conditional probability p(Failure|B,D) is calculated using Bayes’ Theorem as: 
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where:  

 pF is the probability of failure for the entire MCS run: pF=nF/nsim where nF is the total 
number of failures. 

 p(B,D|Failure) is the conditional joint probability of B and D given failure: 
p(B,D|Failure)=nfBD/nF where nfBD is the number of failures for combination B-D. 

 p(B,D) is the probability of discrete, uniformly distributed design decision parameters, in 
this case, p(B,D)=1/(nB*nD) where nB and nD are the numbers of discrete B and D values. 
 

 Combining the above definitions into Eqn. 3, the nF term drops out and conditional 
probability p(Failure|B,D) can be calculated using: 
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 The accuracy of the MCS results depends on the number of realizations. A rule of thumb 
suggested is [6] is that the minimum number of realizations is 10 times the reciprocal of the 
target probability: 
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 In the case of the foundation design example, the suggested minimum number of realizations 
is 10*5*10/0.001 = 500000 realizations. A 64-bit laptop computer with Intel ® Core ™ i5 CPU 
running at 2.53 GHz performs this MCS in a few minutes using calculation software MathCAD 
Prime 1.0, [7].  
  
 
2.3 Analysis of MCS Results 
 
 Figures 3 and 4 show the conditional probability of failure, computed per Eqn. 4, for all 
combinations of design decision parameters B and D. Figure 3 illustrates the effect of foundation 
width and Fig. 4 illustrates the effect of depth. As expected, foundation width has the greatest 
impact, especially for combined loading where the effective area shrinks very quickly with 
increased eccentricity. 



 The conditional probability for each B-D combination is compared to the target probability, 
pT. Those combinations meeting the reliability requirement (i.e., probability of failure less than 
the target probability) are acceptable designs. The foundation with smallest volume of concrete is 
selected as the optimal solution. Note that a different criterion can be used in this selection. For 
example, at rocky sites where excavation is costly, the foundation with the smallest width or 
depth may be selected from the pool of acceptable solutions. In the example problem, the optimal 
foundation obtained with an MCS of 5 million realizations (10 times the suggested minimum), is 
20 m wide and 2.2 m deep. The volume of concrete in this optimal foundation is 357 m3. For this 
example problem, the d-RBD procedure produces a more economical design than that obtained 
by state-of-practice methods using a variety of non-calibrated codes. 
 

 
 

Figure 3- Conditional Probability of Failure as a Function of B. 
 
 

 
 

Figure 4- Conditional Probability of Failure as a Function of D. 



 
 
3. CONCLUDING REMARKS 
 
This paper presents a direct reliability-based design procedure (d-RBD) which can be used in a 
broad range of engineering design applications. The method is flexible and frees the designer to 
focus on the development of better problem inputs. With further guidance and educational 
emphasis on random variables and risk assessment, the method has potential as an improved 
alternative to partial factor methods outlined in design codes. The method has been illustrated in 
this paper for a total stress (φu=0) ULS bearing capacity design of a wind turbine shallow 
foundation subjected to combined loading. In addition to its potential as a design tool, the method 
should prove to be a suitable vehicle for calibrating multiple codes used currently in wind turbine 
structural and foundation design. 
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