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FINITE ELEMENT ANALYSES OF WALLS FOOTINGS AND SLOPES

D V GRIFFITHS*

SUMMARY

The paper describes some viscoplastic iterative solutions to cla551cal
problems of soil mechanics.

Solutions for von Mises materials are shown to be straightforward in their
appiication, but frictional materials; and especially cohesionless soils require
more complex yield surfaces and carefully considered initial stress conditions.
The paper discusses some of the conical yield criteria available for use with
sands and some of the convergence difficulties that may be encountered.

The viscoplastic approach is shown to enable simple implementation of strain

softening phenomena for both clays and sands and some aspects of undrained
behaviour are also discussed.

INTRODUCTION

The aim of this paper is to indicate some of the potentials and shortcomings
of using elasto-plastic models to simulate the collapse behaviour of soil. More
specifically, elastic-perfectly plastic materials are assumed to behave as linear ~
elastic solids until the stress conditions are such that some yield condition is
violated. At this point plastic flow occurs resulting in irrecoverable strains
being generated according to some plastic flow rule.

The behaviour of frictionless materials such as undrained clays (¢, = O)
with respect to total stresses can be examined using the familiar von Mises
failure criterion. For soils possessing both cohesion and friction the more
general Mohr Coulomb yield criterion is applicable. For ¢,, = O soils, Mohr Coulomb
reduces to Tresca's criterion which gives similar results to von Mises.

Incorrect volume change and stress paths prior to and at collapse are valid
criticisms of the simple elasto-plastic models, but in drained problems this is
not a serious handicap. Zienkiewicz et al (1975) showed that only in undrained
or highly confined problems did the volume change (and hence the potential surface
assumed) affect collapse loads significantly. Objections to Mohr Coulomb type
yield surfaces on account of the corners. these surfaces possess in: principal
stress space led to a variety of right circular cones being suggested by various
workers as approximations to Mohr Coulomb. The problems of corners is easily
overcome in the present work using a method suggested by Zienkiewicz and Cormeau
(1974) and in any case the conical.yield surfaces have been shown by Bishop (1966)
to not adequately represent soil strength under general 3-D stress. states.

* University of Manchester
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Mohr Coulomb's yield criterion has stood the test of time well and is still
used as a basis for teaching and design in soil mechanics. Strictly speaking, of
course, Mohr Coulomb's yield surface is 'wrong' as it completely disregards the
influence of the intermediate principal stress o;. Attempts to allow for the
influence of 0, have been made in soil analysis by adjusting the friction angle
rather than tampering with the yield criterion itself leading to some ambiguity
regarding what ¢ value to use in a given analysis (Ko and Scott, 1973). Some
workers have postulated yield criteria for soils which are appropriate to general
stress states, but the advantages gained over Mohr Coulomb do not seem to justify
the added complexity of their formulation for drained analyses.

The examples discussed in the following sections have used a Mohr Coulomb
yvield criterion in conjunction with a plane strain analysis. The ¢ value used in
these cases is therefore assumed to be that measured in a plane strain test. If
$¢c as measured in triaxial compression is used (as is often the case in design)
conservative solutions will always be obtained as it is well known that ¢ps > b

The Finite Element formulation uses viscoplastic theory, and this has been
shown (Zienkiewicz and Cormeau, 1972, 1974) to be an efficient and versatile way
of incorporating different yield criteria and plastic potentials. For a given
system of external and body forces acting on a soil mass, the method iterates
using equivalent elastic solutions until both equilibrium and yield conditions
are satisfied which for a Mohr Coulomb material requires that

1o oT

R SR A

ax T oy - ©

do aT ‘

oy + ax Y - (1)

- 2 2 - + + 20402
(o ox) + 4Txy (ox oy 2cot¢) sin<¢

If these equations could be satisfied exactly the solution would be a statically
admissible solution and hence a lower bound. Although equilibrium is always
satisifed in the Finite Element formulation, the convergence criterion is such
that yield conditions are always violated by a small amount when computation
ceases, This rumerical hardening may be controlled by adjusting the tolerances,
but has not proved to be a serious problem,

All the Finite Element solutions described in this report used 8-node
quadrilateral elements and 'reduced' 2 x 2 point integration.

SIMPLE YIELD CRITERIA

. Figures 1 and 2 show m-plane representations of some of the better known
yield criteria available to approximate soil strength. The yield surfaces are
all given by F = O where F is given as a function of soil strength parameters and
‘the current stresses. The yield function compares the shear stresses with the
shear strength of the soil. If F < O elastic behaviour is assumed, and visco-
plastic behaviour occurs if F 2 O. The stresses are conveniently expressed in
terms of 3 independent stress invariants where in plane strain

ox + oy + o,
g = -
m 3
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3 = Yl - ‘oy)z-' + v(qi -0)% 4 (0, - 0% + 6t 2] (2)

73/-3_J2
8 = lparc sin 3&
207
where
J3 =588 -8S1_°2
Xy 2z z xy
20 -0 = o,
an@d S_ = b4
X 3

/3 Oy defines a particular 7 plane and V2 /3; and 6 act as radial coordinates
within that plane. It should be remembered that any yield surface with a circular
projection in the 7 plane will be independent of 6, and any cylindrical surface
will be independent of confining pressure op.

Figure 3 shows the shortcomings of the right circular cones when applied to
general stress states, and the Extended von Mises surface in particular predicts
enormous strength in triaxial extension as the friction angle increases. Mohr
Coulomb's surface predicts the same stress ratio at failure in extension and
compression and will be slightly conservative as experimental evidence (lLade,
1972) suggests slightly greater strengths in extension. o

Strain softening or "brittle" soil behaviocur may be modelled by modifying
the yield surfaces after peak strength has been reached. 1In the case of a ¢, = O
material the radius of von Mises cylinder may be reduced to a value corresponding
to €res once €pgak has been mobilised. Altering the size of a yield surface
during yield presents no computational difficulties in viscoplasticity and also
gives a simple physical interpretation of softening in principal stress space.

EARTH PRESSURE COMPUTATIONS

The Finite Element mesh used for earth pressure computations is shown in
Fig. 4. The wall was assumed to be perfectly smooth and stresses were applied to
the soil mass by translating the wall horizortally. Stresses on the wall were
obtained at the Gauss points adjacent to it (other wall roughnesses were con-
sidered, but the data will not be presented here).

Figures 5 and 6 show the limiting active and passive forces computed for a
¢y = O and a ¢ = O soil using von Mises' and Mohr Coulomb's yield criteria
respectively. The solutions agree well with Rankine's classical smooth wall
solutions. 1In the case of the frictional soil, the well known difference between
strain to failure in the passive and active cases is reproduced. Figures 7 and
8 show the limiting stress distribution computed at passive collapse.

Figures 9 and 10 give the displacement vectors and yielding zone at
collapse for a general ¢ - ¢ soil. It should be noted that analysis of a soil as
a weightless material is possible provided cohesion is present. Analysis of a
cohesionless material however, must always include self weight otherwise the soil
has zero strength irrespective of ¢. In all cases considered here, initial con-
ditions of K, = 1 were assumed. Making K, other than unity did not affect collapse
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loads, but merely the strains required to géne;ate collapse.

The value of Young's modulus incorporated into the elastic portion of the
model also had the effect of scaling displacements but did not influence the col-
lapse loads. Accurate predictions of displacements prior to collapse require
more sophisticated stress dependent elastic moduli as suggested by Duncan and
Chang (1970).

Simple strain softening behaviour was incorporated into both the cohesive
and the frictional soil models (Figs. 1l and 12). For the cohesive material,
softening was obtained by reducing the radius of von Mises cylinder as a function
of equivalent total strain to a minimum radius of v2 Cres. From Fig. 1l it can
be seen that a quite sudden drop in wall load is computed as softening comes into
effect., The peak mobilised cohesion Cp lies between Cpeax and CRgs as expected,
and the more brittle the stress-strain law the closer is peak Cy to Crgg: In
principle any function of ¢ vs € may be used as the stress-strain law for a von
Mises material due to yield being governed by one invariant only. Present work
on continuously yielding materials will be the subject of a later paper.

Any compatible pair of stress and strain invariants may be used in a von’
Mises stress-strain law. In this paper the definitions are

Y

= I - 2 _ 2 - 2 . 2

o =v3/3; = s [(o, =0 )% + (o, = 0)% + (0, -0 )% + CLR

7 , ‘ - (3)
- 2

and £ = [(e, - ey)z + (e - e )2 + (e, - e)? + 3/2ny2]

€ .
elastic

3

where

E

C=3a+V

For the frictional model an explicit strain softening law is difficult to
formulate on account of yield being governed by all three stress invariants.
The strain at which different portions of the soil mass first reach yield varies,
considerably depending on the initial stress state and elastic stress path inside
the yield surface. The simple model in Fig. 12 incorporates a switch from peak
¢ to residual once peak stress ratio has been reached. Naturally a smoother
transition to residual strength would be more realistic, but the passive resistance
computed is in agreement with the general findings of Rowe and Peaker (1965), that
it is unconservative to compute passive resistance using a Rankine analysis with
¢peag and the actual ¢ for design lies somewhere between ¢ppax and ¢rgs due to
progressive failure. This is also true in the active state, and if small enough
increments of wall displacement are prescribed, the active force is seen to fall
and then rise slightly (Fig. 13) due to the increase in Kp as ¢ drops to its
residual value,

In all the cases discussed in this section convergence of results was
obtained without difficulty, and computer time was not a serious problem.
- Generally speaking the greater the ¢ value used in an analysis, the more itera-
tions required to converge. For example, the results quoted in Fig. 6 used a
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total of 90 seconds CPU time with a Fortran IV program on the CDC 7600 at
Manchester, whereas those in Fig. 5 corresponding to a von Mises material
required 15 seconds.

The wall problem would appear to be a well posed one as far as plasticity
calculations are concerned. The mesh is relatively unrestrained, and the plastic
flow can progress unimpeded from the base of the wall to the free surface.
Solutions were obtained for cohesionless soils with high friction angles and the
collapse loads obtained using associated flow rules and no plastic volume change
flow rules never differed by more than 3%. Computations are considerably less
straightforward in the next class of problem considered.

SURFACE STRIP FOOTINGS

The stress state beneath a footing is an extremely complex one. Active and
passive states coexist and the problem is considerably more confined than the wall
with the plastic flow having to turn through 180° to find a free surface and
permit a 'mechanism' to form. The term mechanism here is used to mean a region
of soil whose shear strength has been exhausted and can offer no more resistance
to movement.

A natural starting point for any footing analysis is Prandtl's problem of
a smooth rigid footing pushed into a cohesive soil. The results of such an ana-
lysis using a von Mises yield criterion are presented in Fig. 14.

Unlike the wall problem, convergence became noticeably harder to achieve as
the friction angle was increased to ¢ > 30°. Convergence of some footing prob-
lems required hundreds of iterations if allowed and correspondingly high computer
times, Convergence problems became even worse if associated flow rules were used
even though the bearing capacities computed were not much higher.

Bearing capacity has been traditionally estimated using the bearing capa-
city formula for shallow footings

YB
= + —
c NC 3 NY + YD N (4)

Ty
If we disregard the third term for surface footings the two bearing capacity
factors N and Ny remain to be found, There is no argument over N which has been
obtained theoretically by Prandtl in his 'exact' solution for a weightless
material possessing cohesion and friction where

N_ = cots | tan? (45 + %) eTtand _ 1:[ (5)
Figure 15 compares computed and theoretical bearing capacities of a smooth rigid
footing on a weightless soil. The slight hardening apparent as ¢ increases is
due to the convergence problems mentioned above and the necessity to allow a
maximum of 100 iterations per load increment using a critical time step as
described by Cormeau (1975). A

No theoretical solutions exist for soils including self weight and hence
the second term of equation (4) will differ depending on whose value of Ny is
used.
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Figure 16 shows the displacement vectors at collapse of a footing on a soil
possessing self weight. The Ny value back-calcuated from the computed value is
compared with that of various workers in Table 1.

TABLE 1
Soil Properties ¢ = 25°
Width B = 2.5 m
c = 5 kN/m?
N = 20.7
Y = 20 kN/n;3 ¢
2
Name NY dypr (kN/m<)
Meyerhof 6.74 272
B Hansen 6.76 273
Sokolovsky 6.92 277
Hill type 7.16 283
Computed 8.70 321
Terzaghi (Nc = 24) 9.80 365
Prandtl/Caguet 14.32 461

It is seen that the Ny value varies by over 100% between that of Meyerhof
and of Prandtl/Caquet. In general the greater the contribution to bearing capa-
city due to the ¢ No term the closer will be the computed result to those predicted
by classical approaches. Figure 17 compares computed results for a smooth rigid
footing of width 2.5 m on a ponderable soil of cohesion 20 kN/m? with a variety
of other formulae.

A brief analysis of bearing capacity was performed using stress control.
This enabled a check to be made on the displacement pattern of a perfectly flexible
footing on different soil types. Figure 18 shows such displacements beneath a
footing on soils with and without frictional components of strength. Collapse
in each case was signalled by a sudden increase in displacements and iterations
when the ultimate stress level was reached. (Collapse stresses obtained by this
approach were always within a few percent of those predicted by averaging
stresses beneath a footing under displacement control.)

Computed displacements were greatest at the centreline of a flexible footing
on a ¢y = O soil, but for the frictional soil, displacements were greatest towards
the footing edge. This result would appear to give some credence to the sugges-
tion in some texts that walls "lean out" on sandy foundations and "lean in" when
the foundation rests on undrained clay.

The same softening model as suggested in Figure 11 was inCorporated in the
footing problem with a von Mises yield criterion. From the jagged shape of Fig.
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19 it can be seen that progressive failure occurs under a footing in a much less
ordered fashion than with the passive wall. The unstable region between first
yield and residual values would appear to be due to the complex stress state
beneath the footing being forced to follow the stress-strain law of Fig. 11 by
the numerical process. It was found that less brittle stress-strain behaviour
resulted in smoothing of this transitional zone.

DEEP STRIP FOUNDATIONS

The bearing capacity factors referred to in the previous section are
applicable only to 'shallow' foundations and become highly conservative for high
D/B. Finite Element calculations have been performed on a number of meshes whose
D/B ratios range from 1 to 12, and a typical mesh is given in Fig. 20. To make
boundary conditions as simple as possible, bearing pressure was applied to the
deep strip in the form of prescribed displacements at the foundation level.

The first type of soil considered was a weightless undrained clay using a
Tresca yield criterion. A decision had to be made as to the boundary conditions
along face AB. This face could either be left open or restrained laterally and
results for both options are compared with Meyerhof's predictions (Meyerhof,
1951) in Fig. 21. When the face was left open a mechanism of the Meyerhof type
could form easily with plastic flow into the 'open' hole (Fig. 22). When the
hole was laterally supported 'collapse' in the plastic sense could not occur
until yield had spread all the way to the free surface at ground level. The
supported hole condition would predict increasingly large qupp values as D/B was
increased whereas the open hole gave a limiting qupp value of 7.5 ¢ at about
D/B = 8 and any further increase in D/B did not result in a larger qurp value.
This latter behaviour is closer to field experience although the N, value computed
is lower than Meyerhof's predicted value of Ng = (2 + 2m) = 8.28 for a deep strip.
The likelihood is that the actual mechanism that occurs in the field lies some-
where between the two extreme boundary value problems analysed here. Plastic
flow of the type suggested by Meyerhof is certainly open to doubt if a rigid
foundation is preventing the mechanism from developing fully. On the other hand,
compressibility of the soil and the footing itself would probably be sufficient
to allow some plastic flow to occur between the base and sides of the foundation.
It is arguable therefore that the two cases taken for analysis represent upper
and lower bounds to the true behaviour.

Using the open hole model, further calculations were performed to obtain
the bearing capacity of a weightless soil possessing both cohesion and friction.
Here, as with the cohesive material, it was found that bearing pressures levelled
out for D/B = 8 as shown in Fig. 23. The figure indicates that as ¢ increase
quLT increases very rapidly, especially for the deeper footings and a difference
of a few degrees in ¢ can alter qupyp considerably. The sensitivity of the value
of quLT to ¢ used in the analysis as ¢ became large was reflected in the numerical
process in the form of large numbers of iterations to converge. This was even
more apparent when self weight was included in the analysis (Fig. 24) and these
results were obtained by allowing a maximum of 100 iterations per displacement
increment. This many iterations was always sufficient for small friction angles,
but for ¢ > 30 the algorithm would frequently have used more if allowed.

Stopping calculations after an arbitrary number of iterations and not permitting
normal convergence inevitably leads to some numerical hardening and over-
estimation of qupqp.

It is perhaps fortunate that the class of problem which is hardest to solve
numerically is also the least interesting physically as far as ultimate conditions
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and collapse are concerned. Design of foundations of predominantly frictional
soils is rarely governed by collapse considerations. This is because settlements
become excessive due to soil compressibility before collapse is reached in all
but the narrowest footings.

In real soils at high confining stresses such as those occuring under deep
foundations, crushing takes place during shear and this will result in a reduced
¢ value. In principal stress space this would take the form of a curved Mohr
Coulomb failure surface where ¢ reduces as a function of op. The simple model
used here takes no account of this phenomenon although it could easily be included
if empirical data relating ¢ to o, were available.

The results given in Figs. 23 and 24 were all obtained using a flow rule of
no plastic volume change. Fully associated flow rules invariably gave higher
collapse loads due to the added confinement induced by the volume increase, but
the difference in qupp obtained was not significant. The volume change predicted
by the associated flow rules however, was at times ridiculously large (Fig. 25).

No analytical solutions exist for deep foundations although Chen (1975)
performed upper bound limit analyses using Prandtl and Hill mechanisms. These
solutions are in reasonable agreement for shallow footings but are significantly
less than those predicted here as D/B is increased. The mechanisms chosen by
Chen were different to those observed in the Finite Element calculations which
were of the Meyerhof type, although it might be argued that the combination of-
the boundary restraints and the open hole in the Finite Element mesh conspired to
give the soil 'no choice' as to the direction of plastic flow. Further investiga-
tions of the elastoplastic behaviour of deep foundations are currently being made.

SLOPE STABILITY

Elastoplastic analyses of slopes using the finite element method have been
presented by Smith and Hobbs (1974) for cohesive slopes and by Zienkiewicz et al
(1975) for soil possessing both cohesion and friction. It has been shown that by
the application of gravity loads (and hence stresses) to a slope with known
strength, instability would be indicated by large displacements and slow con-
vergence. A stable slope would converge quickly or even remain elastic. It was
suggested that by reducing each of the components of shear strength in turn while
keeping the other constant until failure occured, factors of safety on ¢ and tan¢
could be obtained which would not necessarily be the same.

The example cited here is very similar to that described by Zienkiewicz et
al (1975) and the mesh used is given in Fig. 26. Attempts were made to find the
shear strength parameters to just cause collapse of the slope under gravity in
the cases of a cohesive soil and a general ¢ - ¢ soil.

The effect of reducing c on the vertical deflexion of the crest of the slope
is given in Fig. 27a and is in excellent agreement with Taylor's (1937) analytical
prediction.

By keeping ¢ constant and reducing ¢ in a general soil gave collapse in
close agreement with Bishop and Morgenstern's (1960) effective stress method,
Fig. 27b. The plastic displacement vectors at collapse are superimposed in Fig.
28 for both these soils and as expected the frictional soil displays a more
shallow failure zone than the cohesive material,.
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UNDRAINED BEHAVIOUR

Accurate numerical modelling of undrained soil behaviour is considerably
harder than the drained problems mentioned hitherto. This is due to the important
role that volume change plays on the effective stresses and hence strength of the
soil. A dilating material in an undrained analysis will become stronger as the
pore pressures fall and bind the particles harder together. Failure will not
occur until either crushing of the soil results in critical state conditions or
the pore fluid cavitates (Seed and Lee, 1967).

The potential surfaces used in the examples given in previous sections are
totally inadequate for accurate volume change predictions. Elastic behaviour is
assumed inside the yield surface, and this can only result in volume decrease
(v < 0.5). When the stress path touches the yield surface plastic strains occur
according to the flow rule, With the exception of using a dilation angle of
zero, these plastic strains will always be dilative. The simple model therefore
predicts a small volume decrease followed by a dilation which is similar to the
behaviour of dense sands under shear, but for the wrong reasons!

Undrained analyses have been performed on the simple model using the
method suggested by Naylor (1974) whereby a large fluid stiffness is added into
the volumetric parts of the effective soil stiffness matrix. The behaviour of
the wall under these conditions is given in Fig. 29 for three different dilation
angles., It is seen that only the soil with no plastic volume change can fail
in shear, and when the dilation angle is positive the soil appears to have
unlimited resources of passive resistance! The results of incorporating a
simple cavitation model are shown in Fig. 30. This model assumes that if the
water pressure falls to 100 kN/m? of tension it stays at that value due to
cavitation, and the soil can now reach yield as the mean stresses are no longer
rising.

Apart from the inadequate volume change predictions of the simple models,
a truly undrained analysis will certainly overestimate the influence of dilation
on pore pressure due to the permeability of the soil which may be quite large
for granular soils, 1In this case consolidation and plasticity theories must be
coupled (Zienkiewicz et al, 1978).

CONCLUSION

Simple elastoplastic models have been shown to be of value in predicting
the collapse loads of typical soil mechanics problems under drained conditions.
The majority of examples presented here have been shown to compare well with
theoretical solutions and this justifies the use of the method in more complex
and realistic problems involving non uniform properties and geometries.

Analysis of footings using these models was straightforward for soils
possessing a large cohesive component, but as friction was increased convergence
became harder to achieve.

Undrained problems were analysed using the simple model and some features
of real soil behaviour can be reproduced but for essentially the wrong reasons.
Realistic modelling of undrained behaviour requires more sophisticated flow rules
with stress dependent potential surfaces which can cope with both plastic con-
traction and dilation.
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