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SUMMARY

Using simple numerical models, the influence of various stress/strain
paths, both pre- and post-peak is examined with reference to ultimate earth
pressure conditions. Both cohesive and frictional soils which strain soften
are considered, and progressive failure is reproduced numerically leading to
ultimate loads that are dependent on the degree of post—peak brittleness.

Although all calculations assume the soil to remain a continuum, the
finite element solutions are observed to give a good indication of the failure
surfaces along which large relative movements occur.

INTRODUCTION

When the stress/strain bebaviour of a soil is referred to, it must be
asked, "What stress, and what strain?" 1In a triaxial test, the stress/strain
behaviour is conveniently expressed in terms of a deviator stress and an axial
strain, In continuum two~ or three-dimensional problems, triaxial stress
states practically never occur, sc a more general stress/strain relation must
be used that takes account of the fact that all the shear and normal components
of stress and strain may now be non-zero.

Undrained clay behaviour is a convenient material to work with because in
theory, its strength and stress/strain path to failure in a triaxial test is
independent of confining pressure. Deviatoric invariants of stress and strain
are suggested for such a material where in plane strain:

- 1 2 2 2 2 %‘
T = -—-\/—5_ [(c:x - dy) + (cryr - crz) 4+ (crz - cx) + Gtx.Y] (1)
2 3
2 2 2 3ay
dg = —"_}E [(dsx = dey) + (c‘Lzy -de ) + (&, - de ) + —2"'2] (2)

These invariants have the advantage that under triaxial conditions, G reduces
to the familiar deviator stress. Although these are the deviatoric stress and
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strain invariants used in the present work, some workers prefer to use t and
Y where E

7 ' o (3)

2
3
) - 3 e
and ay = ,E- de (4)

as these represent actual lengths in principal stress or strain space.

1 =

Vhetever invariants are eveniually chosen, they must be compatible from an
energy viewpoint. If op and dv aere the volumetric invariants of stress and
strain where

o
m

(o + g+ 0,)/3 (5)

= +

v (de, + dey dsz) (6)
then the total energy supplied to an element of material is given by the
product of these invariants thus

dE = Ed.E'PO'md; (T)

It may also be noted that under elastic conditions

m jal

= 3G . (8)

Fig.l gives three invariant stress/strain paths that are proposed for
implementation in & continuum problem. Curve A represents familiar elastic-
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perfectly plastic material behaviour, curve B reaches its peak strength in a
smoother fashion, exhibiting both elastic and plastic strains throughout the
stress path, and curve C shows a strain-softening behaviour following an
initial elastic phase. Curve B for example, could be fitted to typical
triaxial stress/strain curves obtained with a normally consolidated clay.
Curve C approximates the behaviour of some clays and especially sensitive clays
where shear strains result in changes in structure of the clay and a
corresponding reduction in strength. This decrease in strength is thought to
be due to the reorientation of plate-like clay particles parallel to the
failure surface. The difference between peak and residual strength in silty
clays is usually small, but increases with clay content., The difference also
tends to increase with increasing overconsolidation ratio.

Dense sands at moderately low confining pressure also exhibit strain-
softening, but due to & differemt mechanism, The post-peak reduction in
strength in this case is due to the interlocking component of strength in the
sand having been overcome.

The significance of the strain-softening portion of a stress/strain curve
may not be important if small shear displacements are anticipated in a given
field problem. If this is mnet the case however, it would be unconservative to
rely on peak strengths in design. The phenomenon of progressive failure was
discussed by Rowe and PeakerZ in the passive wall problem. They found that the
maximum resistance of a passive wall corresponded to a friction angle that lay
between the peak and residual values.

The stress/strain models proposed for frictional soil given in Fig.2
include an elastic, perfectly plastic material (Curve A) and a softening
material (Curve B) that employs a step reduction in strength from peak to
residual. These curves are written in terms of stress ratio and axial strain
because unlike the clay, no unique & - £ relationship is applicable.
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Fig.2 TFrictional Stress/Strain Laws
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Unfortunately, the stress/strain behaviour of frictional soil is
considerably more complex than that of undrained c¢lay. The influence of
confining pressure for example, is considerable. It directly affects the shear
strength of a frictional material, it has a direct influence on s0il stiffness,
the peak friction angle is reduced with increase in confinement with
corresponding reduction in softening effects, and the volumetric dilative
tendency of dense sands is suppressed. Indeed, the only parameter that is
insensitive to increased confinement is the residual frietion angle, Due to
these difficulties in cohesionless soil behaviour, the use of complex
constitutive models”*“ seems unavoidable if the above effects are to be
sccounted for. Certainly, no simple shear stress/strain law as proposed for
the undrained clay material would suffice.

Naturally, the complexity of any model used will depend on what a given
analysis seeks to achieve, Volumetric change for example, especially in
cohesionless soils, remains an extremely complex quantity to generalise for
different stress paths. It is suggested however, that if collapse loads and
ultimate conditions are of interest, meaningful results may be achieved, even
with the greatly simplified models presented here.

STRESS/STRAIN MODELS

Cohesive Soil

The three models given in Fig.l are all given in terms of the deviatoric

stress/strain invariants o and & which were defined earlier.

Curve A is a simple elastic-perfectly plestic model fully defined by the %
gradient of the elastic portion which is equal to 3G, and the peak cohesion q
Cppax &t which plastic bebaviour commences. The failure surface in this model
would be a stationary cylinder in principal stress space with radius 2 Cprak-

The two parameters used in this model were as followss:
6 = 5x 10 Wi/n°
2
Cpmak = 100 kN/m“.

Cﬁrve B reaches the same peak cohesion as A, but takes a more realistic
path exhibiting both elastic and plastic strains given by

g = o Lukids e g (9)
3G 3 c
PEAK
where A = constant affecting the initiel gradient. Such a curve could be

fitted to triaxial test results on undrained clay by adjusting G and A. The
failure surface in this model is identical to 4, but an infinite family of
concentric yield cylinders could be visualised within it, initially of zero
radius, but growing as a function of E.

The three parameters used in this model were as follows:

3.7 % 104 kN/m2
10~4

G

2
Crpag = 100 kKN/m".
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Curve C requires four parameters; CPEAK, Crrs, G and H, where H is
the gradient of the softening portion. Prior to peak strength, the material
behaves elastically as in model A with gradient 3G. The failure surface in
this model would initially be of radius JrE'GPEAKr but would shrink as a
function of € and H +o & new constant radius of 2 CRps. The four
parameters used in this model were as follows:

= 7.41 x 10* WN/w?

G

H = -5.56 x 107 xv/m?
2

C, = 100 kN/z;

CRES = 50 kN/m".

The jagged shape of curve C is by no means obligatory. Any combination of
mathematical functions, such as that used in B, but incorporating softening,
could be used.

Frictional Soil

As stated in the Introduction, simple stress/strain behaviour is very
difficult to express in a general form for this type of soil., For a given mean
stress however, the simplest parameter that remains fairly constant at failure
for different stress paths is the stress ratio Gi/oé where

1 1

g g
(c—}) N tan®(45 +i§-—“—) (10)
3

From the two models described in Fig.2, model A remains elastic until peak
stiress ratio is reached, whereupon perfectly plastic behaviour ensues. The
simple softening model B, remains elastic until the peak stress ratio is
reached, after which the residual surface comes into play in the form of a step
reduction in strength. In a continuum analysis, all points would have a
strength governed by either dﬁEAK or dﬁES' In principal stress space, this
could be visualised as two Mohr-Coulomb hexagonal cones with the inner cone
only coming into play once the outer cone had been reached.

The properties used in both models A and B involved an elastic shear

modulus where
G = 188 o

with oy being the initial mean stress. The peak and residual friction angles
were taken as 40° and 30° respectively.

'
Smoother transition during hardening to gpmpg, &and softening to ﬁﬁES
could have been implemented if required.

The influence of mean stress on ﬁéEAK may also be incorporated and is
the intended topic of a later paper. The aim of the present work hovever, is
to fully exploit the simple models while taking account of their obvious
shortcomings.

SOLUTION PROCEDURE

Plane strain finite element analyses were performed on the mesh of Fig.3.
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Fige3 Mesh Used for Earth Pressures Computation

Eight-node quadrilateral elements were used with "reduced" (2 x 2) Gaussian
integration in both the stiffness formulation and the plastic stress
redistribution. Plasticity was introduced using the wviscoplastic technique
which is described elsewhere®s and which has been shown’ to be an efficient
and versatile way of solving problems of elasto-plasticity.

Stresses were applied to the soil in the form of prescribed, horizontal
displacements simulating an infinitely rigid wall.

The heart of the viscoplastic algorithm lies in the expression for plastiec
strain rate where %
e K]
£ = 7 F J5. ° (11)
F represents the current yield function and mey easily be made a function of
any related variables. If F =0, the stress state lies on the yield surface,
but if F > 0, then yield is violated and equation 11 comes into play.

In cohesive model A, F defines a constant failure surface where
F, = 8- /3 Cppyg (12)

In cohesive model B, F defines a yield surface which expands as & function
of & from equation 9. At any stage of the caleculation, for a given value of
£, equation 9 must be solved to give the current size of the yield cylinder
which is then compared with the current stress state thus

By = 8= (13)
In cohesive model C, F is again a function of £ and may be summarised
thus : J_
3C
. = PEAK
it & < 3G
then FC = O = qu CPEAK (14)

* The plastic potential Q always predicts zero plastic volume change in the
present work.
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/3 Copu < ﬁCPEA]{+ /3 %ps -V Cmix
36

else if < G H
S I
then B o= 7= (ﬁ Comax + (e —T)H ) (15)
lse if ﬁCPEAK . ﬁcmas‘ 3 Cpmg -
else 1 3G B ~ E
then F, o= 0~ \/3 Crrs (16)

Equations 14, 15 and 16 quoted here force all Gauss points in the finite
element mesh to follow curve C in Fig.l. Whereas model A required only the
evaluation of ¢ for comparison with the constant failure surface, models B

and C required that & be evaluated first in order to find the current size of
the yield surface before comparing stresses with it.

In models A or C, only points within the mesh in the zones of high shear
stress will ever yield (Fig.5), with the great majority of the mesh remaining
elastic. In model B, any amount of wall movement, no matter how small, will
cause all points in the mesh to viclate yield to some extent, requiring
substantially more computing effort. This point may become significant in
large problems where computer costs must be minimised. Generally speaking, the
less Gauss points that leave the elastic zone, the cheaper the solution.

For the frictional material, model A describes a simple elasto-plastic
model governed by Mohr-Coulomb's failure criterion where
1 1 L] 1]
o, + 0 (¢, - 0,)
1 3 . ! 1 3
F = 2 sin ﬁPE £ - = 5 (17)
Alternatively, the material remains elasiic until peak stress ratio given by
equation 10 is reached, whereupon plastic yield commences.
The softening model B keeps a watch on the stress ratio at each Gauss
point. Wherever it reaches the peak value, a new lower friction angle ﬁﬁES
replaces the peak angle and the reduced strength is defined by

1 1 1 |l
gy + 04 . (crl - 0’3)

F = “'—"'—2 sin ﬂ'RES - > . (18)

RESULTS
Cohesive Models

The results in Fig.4 represent the build up of pessive resistance (Pgp)
with horizontal wall strain for each of the three models., The resistance was
obtained by averaging the horizontal stresses in the first column of Gauss
points adjacent to the displaced nodes, and multiplying by the wall height.
The ordinate plotted in Fig.4 is the 'mobilised cohesion' at each stage of the
calculation where

C = 355 (19)
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Fig.4 Build-up of Passive Resistance in Cohesive Models

Models A and B gave identical values of peak passive resistance, but
model B gave a softer responseg due to the greater amount of plastic straining.
Although model C had the same peak cohesion as A and B, the peak mobilised
value in the wall problem lay between the peak and residual element values.
This effect was due to progressive failure and Fig.5 shows how various parts of
the yielding zone are simultaneously at different stages of softening, Only at
larger values of wall strain, when & mechanism has formed comprising only of
soil at its residual strength does Cp tally with Cgrgs. It is also
interesting to note that in this case peak Cp {upper Fig.5) occurs before
yield has spread to ground surface. The sudden reduction in Cp coincides
with the formation of a plastic mechanism between the base of the wall and the
ground.

Peak Cp always lies between Cppax @and CgEs, but its position
relative to these extremes depends on the brittleness properties CRES/CPEAK
and -H/3G. A summary of results for different degrees of brittleness is
given in Fig.6., It was found that as the steepness of the softening curve was
increased, the maximum wall resistance fell due to the greater brittleness. A
siage was reached however, when -H/3G > 1, at which increase in the
softening gradient had no further effect on the wall resistance. The
softening at this stage wes presumably occurring so suddenly that the gradient
of the transition from peak to residual was inconsequential.
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Figs5 Spread of Yield at Different
Stages of Loading in Cohesive
Seil

Frictional Models
The results in Pig.7 show the build-up of wall resistance for models A
and B (Fig.2) in terms of a "mobilised friction angle" g, where

P
m

1
> T H

1
ﬁm = 2(arctan

5 - 459) {20)

As before, the perfectly plastic material closely reproduced Rankine's
solutlon and the softening model gave a peak ﬁm that lay between gpmag and

#rEs-

In spite of the simplicity of the frictional models assumed, two important
qualitative features were observed. Fig.B8 reproduces the progressive failure
that occurred in the soil mass, Three Gauss points were taken at varying
distances from the wall, Soil near the base of the wall was seen to reach peak
strength and soften while soil further away still had reserves of strength.

The peak #; in Fig.7 occurred when softening elements on the shear surface

599



P N—
By

2 3 IHolo
Fig.,7 Build-up of Passive Resistance in Frictional Models

by

—

a4— T —o=
N
T

Pheax = 40°
$'es = 30°

1 1
05 10 B/ Ho/o

Pig.8 Progressive Failure in Softening Frictional Soil

outweighed the elements that were s+ill hardening.

Fig.9 shows the extent of yielding in both models A ard B after 1% of
wall strain, The softening soil clearly yielded in e narrower zone as shear
strains concentrated in the weaker soil that had reached residual conditions.
This is consistent with the fact that a passive wall fails along the path of
least resistance. As was observed with the cohesive soil, peak resistance was
achieved before plasticity had spread to ground level. *
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Fig.9 Effect of Softening on Spread of Yield

Continuum finite element solutions using small strain theory and crude
meshes are limited in their ability to reproduce large relative movements along
narrow slip surfaces, Naturally, finer meshes go some way to improving the
situation, but a feir idea of the mechanisms of failure can still be obtained

with crude meshes.
frictional model A.

Fig.1l0 shows the situation at passive failure using

It can be seen that the great me

;ority of movements

occurred to the left of Rankine's line drawn at 45- dPEAK/z to the horizontal.
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CONCLUDING REMARKS

The cohesive models indicated that any invariant relationship between o
and & (or other compatible invariants) could form the basis of a stress/
strain law Por undrained clay. Strain-softening effects are eesily included in
these relationships which can be obtained by curve fitting laboratory triaxial
data.

The form of the proposed stress/strain laws had virtually no effect on
peak passive resistance provided no softening was included. When softening was
incorporated, progressive failure resulted in the peak resistance lying between
the peak and residual element strengths. The value of the peak resistance in
this case was dependent on the shape of the stress/strain curve path pre- and
post-peak and was dependent on certain dimensionless 'brittleness' parameters.

In the context of simple models, considerably less versatility is possible
with frictional soils due to their added complexity. By just specifying peak
and residual friction angles however, collapse loads in close agreement with
Rankine could be obtained and even progressive failure with narrowing of the
shearing zones detected.

Finally, reasonable mechanisms of failure could be detected from the
displacement plots at failure. This was in spite of using crude meshes and
simple iteration procedures.
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APPENDIX A

Notation

PEAK

RES

deviatoric invariants of stress
deviatoric invariants of strain increment
Cartesian stress components

Cartesian strain components

volumetric invariant of stress
volumetric invariant of strain increment
energy increment

shear modulus

peak undrained cohesion

residual undrained cohesion

curve fitting parameter

gradient of softening line, wall height
principal effective stresses

peak friction angle

residual friction angle

vector of viscoplastic strain rates
fluidity parameter, soil unit weight
yield function

plastic potential function

vector of stresses

mobilised cohesion in the mass
mobilised passive resistance in the mass
mobilised friction angle in the mass
horizontal wall movement

peak passive force
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