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Estimation of seepage through spatially random soil by equivalent rectangles

G.M. Paice & D.V.Griffiths
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ABSTRACT: A method of estimating the statistics of the flow rate through a complex two-dimensional
seepage domain with spatially random soil permeability by utilising a simplified boundary value prob-
lem has been studied. Random field theory for the generation of scil permeability properties with a
fixed mean, standard deviation and spatial correlation structure, have been combined with finite element
methods to perform ‘Monte Carlo’ simulations of both the original problem and the simplified problem.
The results of parametric studies to gauge the effectiveness of the simplified problem to model the be-
haviour of the full domain for two example problems are presented.

1 INTRODUCTION

The assessment of seepage beneath water retain-
ing structures is of great significance for both the
serviceability and stability of the design. The esti-
mation of the seepage quantity, exit gradients and
for structures like dams, the uplift forces are clas-
sically obtained through carefully drawn flow nets
(Casagrande, 1940; Cedergren 1967; Verruijt, 1970)
or by the ‘Method of Fragments’ (Pavlovsky, 1933;
Harr, 1962; Griffiths, 1984). In these methods,
anisotropy and stratification can be taken into ac-
count but not the spatial variability of the soil. Pre-
vious studies that incorporate random field theory
(Vanmarcke, 1984) and the finite element solution
of Laplace’s equation for steady state seepage have
shown the effects of a stochastic soil permeability on
the statistics of the required quantities for a num-
ber of boundary conditions (Smith and Freeze, 1979
Pts. 1 and 2; Fenton and Griffiths, 1993; Griffiths
and Fenton, 1993; Paice, 1993; Griffiths et al, 1994).

The work contained in this paper presents a method
of estimating the seepage quantity statistics of the
flow through a complex two-dimensional stochastic
soil domain by studying only the flow between two
parallel plates, refered to as the ‘equivalent rect-
angle’ for the rest of this paper. This approach
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leads to a simpler boundary value problem to be
solved and therefore often a large saving in com-
putation time, ultimately allowing the presentation
of results in the form of charts. This time saving
allows the design to be optimised to a greater de-
gree before carrying out a complete boundary value
analysis of the problem if the exit gradient and up-
lift is required. The current method is applicable
only to isotropic random fields where the covariance
structure is independent of translation and rotation.
This restriction is a consequence of the alteration
of the boundary value that is being solved. Covari-
ance structures that do not display independence
of translation and rotation will yield a stochastic
system that bears no resemblance to the original
problem.

The key quantity required for the presented method
is the shape factor, §, which is equal to the number
of flow channels divided by the number of equipo-
tential drops of a well drawn flow net. This shape
factor is equivalent to a “finger print” of the steady
state flow conditions through the soil domain and
may be obtained either through the construction of
a flow net by hand or through a deterministic finite
element analysis of the complete boundary value
problem. Once this shape factor has been obtained
an ‘equivalent rectangle’ boundary value problem



may be set up and the flow problem solved.

2 BRIEF DESCRIPTION OF FINITE ELE-
MENT AND RANDOM FIELD MODELs

The finite element program used for the solution of
Laplace’s equation for the boundary value problems
presented in this paper is similar to that published
in the text by Smith and Griffiths (1988). In all
the analyses a uniform mesh of 4-node quadrilat-
eral elements were used. The element conductiv-
ity matricies were computed explicitly and formed
into the global conductivity matrix using a ‘skyline’
storage approach to optimise both the speed of the
computations and the storage requirements.

Field measurements of permeability have indicated
an approximately lognormal distribution (see e.g.
Hoeksema and Kitanidis 1985, and Sudicky 1986).
The same distribution has therefore been adopted
for the simulations generated in this paper.

Essentially, the permeability field is obtained
through the transformation

(1)

in which k; is the permeability assigned to the i"
element, g; is the local average of a standard Gaus-
sian random field, g, over the domain of the i** ele-
ment, and i, and o1, 5 are the mean and standard
deviation of the logarithm of k (obtained from the
‘target’ mean and standard deviation py and o).

ky = exp{fiar + Omk gi}

The LAS technique (Fenton 1990, Fenton and Van-
marcke 1990) generates realizations of the local av-
erages g; which are derived from the random field g
having zero mean, unit variance, and a spatial cor-
relation conirolled by the scale of fluctuation, f.
As the scale of fluctuation goes to infinity, g; be-
comes equal to g; for all elements ¢ and j — that is
the field of permeabilities tends to become uniform
on each realization. At the other extreme, as the
scale of fluctuation goes to zero, g; and g; become
independent for all i # j — the soil permeability
changes rapidly from point to point.

In the two dimensional analyses presented in this
paper, the scales of fluctuation in the vertical
and horizontal directions are taken to be equal
(isotropic) to allow the mapping of the more com-
plex boundary value problem to that of the ‘equiv-
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alent rectangle’. The 2-d model used herein implieg
that the out-of-plane scale of fluctuation is infinite -
soil properties are constant in this direction — which
is equivalent to specifying that the streamlines re-
main in the plane of the analysis.

3 EQUIVALENT RECTANGLE METHODOL
OGY

The general methodology of the ‘equivalent rectan-
gle’ method will be demonstrated by taking the case
of the steady state seepage under a single sheet pil
wall penetrating into a confined soil medium. Thy
full problem and ‘equivalent rectangle’ are shown i
Figures 1 and 2 respectively. :
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equal to the ratio of the dimension of the en-
try and exit seepage faces to the impermeable
boundary, the dimension of the impermeable
boundaries can be calculated simply through
the following equation:

2= (2)

4. Perform a ‘Monte Carlo’ simulation of the
flow through the ‘equivalent rectangle’ to ob-
tain the statistics of the flow rate (mean and
standard deviation).

5. Subject to the reliability of the current design
in the context of the flow rate, the procedure
may return to the first step and modify the
boundary value problem to produce a more
reliable design.

For a uniform permeability field there is no restric-
tion on the dimension of the seepage faces in step 2.
Under stochastic conditions a restriction has been
placed so that the height of the ‘equivalent rectan-
gle’ should be equal to that of the minimum restrict-
ing dimension of the full problem. This restriction
imposes the same ‘blockage’ effect that the scale of
- fluctuation has on the full problem when the fluid
‘passes through the minimum resticting dimension,

4 EXAMPLE PROBLEMS

i
&

both examples presented, each ‘Monte Carlo’
imulation consisted of 5000 realisations of the per-
1 ability field based on the set of input statis-
oS (pik, 0%, 0k} for both the full problem and the
quivalent rectangle’. In all the analyses pre-
d, the input mean permeability has been set to
1.0 x 107% m/s. For convenience the flow rate

Q= Q/(Hpy) 3)

15 the total head loss across the boundary
roblem, typically set to unity.
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Figure 3: Influence of random permeability
on mean flow rate, p;

Briefly concentrating on the full problem, Figure
3 indicates a consistent fall in the expected value
of the flow rate, pg, from its deterministic value of
Q= 0.5 for increasing input permeability coefficient
of variation oy/u,. For smaller values of the scale
of fluctuation #j the reduction is more substantial
than for higher scales of fluctuation. The expected
flow rate is clearly tending towards the determinis-
tic result for the higher scales of fluctuation which
is expected for a strongly correlated permeability
field.
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Figure 4: Influence of random permeability
on standard deviation of flow rate, o




Figure 4 shows the standard deviation of the nor-
malised flow rate, og, for the full problem. For
small 0, little variation in Q was observed but as
8y increased then the flow rate became more vari-
able, tending towards the limiting value indicated

by 8 = oo given by equation (4).

0% = Ok
o= o Qe P (4)
The maximum point observed in the plot of o5 vs.
logo(0i/ux) is an interesting result and appears to
oceur at a higher value of oy /p; for increasing ;.
These results are consistent with those previously
published by Grifiths et al, 1994, Two examples are
presented with representative results to gauge the
effectiveness of the ‘equivalent rectangle’ method.

4.1 Symmetrical Single Sheet Pile Wall

For this problem the wall penetrates halfway into
a confined soil medium with the same boundary
conditions shown in Section 3. From inspection of
the problem, the minimum restricting dimension is
equal to the distance vertically underneath the wall
which in this case is equal to 2.0m. Therefore the
height of the ‘equivalent rectangle’, v, is equal to
2.0m. Solution of the deterministic full boundary
value problem leads to a shape factor of § = 0.5
which allows the calculation of the length of the
equivalent rectangle, x, to be 4.0m.

U - _‘De_t'err;ini;tic_: 05013

—+— Full Problem
—>¢— Equivalent Rectangle

€,
o o0
5 &
|T|J

o

w

3
|

Normalised Mean Flow Rat
o =)
{;} L
1.7,

1

0.15 T

||II|||J T IIIIIIII T mTTT

1.00 10.00
Isotropic Scale of Fluctuation, Gk (m)
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Figure 5 shows the expected value of the mean flow
rate, g, for both the full problem and the ‘equiva-
lent rectangle’ for o4 /p; = 3.0. This value of o/ 1y
is equal to the recommended upper limit suggested
by Lee et al, 1983. This high coefficient of variation
represents the worst correlation between the results,
of the full and ‘equivalent rectangle’ analyses with
the ‘equivalent rectangle’ predicting a value of L
equal to a maximum of 1.10 times that given by the
full problem at 6 = 8.0m.
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Figure 6 shows the standard deviations of th

the full and ‘equivalent rectangle’ boundary
problems is worse than for g with the ‘equi
rectangle’ predicting a value of g equal to a
imum of 1.52 times that given by the full pr
at a value of 0y = 1.0m. The sporadic resul
tained using the ‘equivalent rectangle’ for
of 0 = 32.0m appears to be a induced by t
scale of fluctuation and the use of more reali
would improve this prediction.

Visual inspection of Figure 5 and 6 show t
though the predicted values of the statistics of
normalised flow rate are not perfect the
lent rectangle’ displays reasonable agreer
creasing scale of fluctuation and are clos
large range of 4y,



4.2 Unsymmetrical Single Sheet Pile Wall

For this problem the wall penetrates 30% into the
confined soil medium but the dimensions either
side of the wall are unequal. This boundary value
problem is equivalent to a double-walled cofferdam.
For this case the minimum restricting dimension is
equal to the distance from the left of the wall to the
impermeable boundary, 1.6m. Solving for the shape
factor gives § = 0.514 and therefore the length of
the ‘equivalent rectangle’ is equal to 3.113m.
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Figure 7: Full boundary value problem - not
to scale
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maximum of 1.06 times that given by the full prob-
lem at 8, = 8.0m.

Figure 9 shows the standard deviations of the nor-
malised flow rate. On the whole, the agreement
between the full problem and the ‘equivalent rect-
angle’ is better than that observed for the symmet-
rical boundary value problem with the ‘equivalent
rectangle’ predicting a value of og equal to a max-
imum of 1.24 times that given by the full problem
at a value of #; = 8.0m.

5 DISCUSSION AND CONCLUDING REMARKS

The paper has presented a method of estimating
the statistics of the flow rate through a complex
two-dimensional soil medium with spatially vari-
able permeability by the solution of only the flow
between two parallel plates. This method results in
considerably faster analyses (for example, the prob-
lem presented in section 4.1 typically ran 12 times
faster for the ‘equivalent rectangle’ based on the
same degree of element discretisation) with accept-
able accuracy in most cases.

Overall the ‘equivalent rectangle’ modelled the
mean flow rate better than the standard deviation
and the improvement of these standard deviations
is the subject of further work. Improvement may be
obtained through the recognition that the full prob-
lem demonstrates a behaviour which tends to follow
the geometric mean permeability (Paice, 1993; Grif-
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fiths ef al, 1994) while the parallel plates problem
tends to behave like a series of blocks of permeabil-
ity due to the value of the shape factor, §, being
less than 1.0 for the majority of seepage problems.
The parallel plate problem therefore exhibits a be-
haviour that is closer to the harmonic mean perme-
ability for lower §.
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