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In finite-clement analysis the governing stiffness equation
gives the relationship between nodal displacements and nodal
forces. Applied boundary conditions must be converted to equi-
valent nodal forces or nodal displacements. The solution of the
stillness equation gives the unkmown displacements at unre-
strained nodes and the unknown reaction forces at restrained
nodes. The bearing capacity problem may be solved by applying
the footing load as equivalent nodal forces or by applying nodal
displacements and determining the nodal reactions. The former
simulates a load controlled test of an infinitely flexible footing
and the latter simulates a displacement controlled test of an
infinitely rigid footing. The latter is computationally easier for
the determination of failure loads and is used by the authors. In
this case, the total footing load applied to the ground surface is
equal to the sum of the nodal reaction forces.

The authors have calculated the footing load from the
vertical component of stress at the first row of Gauss points,
However, the vertical components of stress in the ground
immediately below the footing is not necessarily in equilibrium
with the vertical nodal reactions. This is because the reactions
in equilibrium with shear stress on vertical planes as well as the
direct vertical stress. In the writers’ experience the use of the
vertical component of stress in the ground is not reliable for the
calculation of bearing capacity in displacement controlled
analysis.

The writers agree with the authors’ findings that bearing
capacity calculations are mesh size dependent. However, the
writers have found it is the size of the element at the corner of
the footing that is instrumental in determining the magnitude of
the failure load when displacement control is used.

To illustrate these points Tables 6 and 7 give the results of

displacement controlled finite-element analyses performed by
the writers. The material properties and initial stress are the
same as adopted by the authors. Results for N, are presented
for ¢ =25° Bearing capacity factor N, has also been calcu-
lated for a cohesionless material to illustrate the points made
above. The bearing capacity factors have been calculated, first
from the nodal reactions, and secondly from the vertical stress
(interpolated from the vertical stress at the Gauss points) at
various depths beneath the footing. The stress due to the weight
of the soil above the point (yd) has been subtracted to give that
portion of the stress resulting from the footing load. Different
mesh configurations (Fig. 5) show the dependence of the finite-
element calculation on the corner element size (the whole mesh
is 10m deep and 20 m wide. A 1-2 m X 2.4 m detail near the
footing is shown in each diagram).
The following observations are made frdbm Table 6:

e The vertical component of stress beneath the footing is
significantly less than the value implied by the vertical nodal
reactions.

¢ The value of N approaches the theoretical value as the size
of the corner element is reduced.

¢ The vertical stress beneath the footing is less sensitive to the
mesh size than the nodal reactions. The value at the Gauss
point depth is remarkably close to the theoretical solution.

The following observations are made from Table 7:

o The nodal reactions and the vertical stress beneath the footing
give much the same results (contrary to N;).

e N, calculated from the nodal reaction forces approaches the
stress field solution (Hansen & Christiensen, 1969, Bolton &
Lau, 1993) when the size of the corner element is reduced.

e The effect of the footing width B on the value of N, is
insignificant.

Table 6. Finite element values of N, (theoretical solution, N, =5§14)

Mesh number (Fig, 5) 1 2 2 3 4 4 4

(corner element size, | (0:20) 0-10) (0:05) |- (0-40) | (020) | (0-10) (0-05)
a: m)

From nodal reactions 5-33 522 5-19 550 529 522 519

From o, at surface 5-13 513 514 5-00 512 513 510

From o, at 512 511 512 4.98 5-08 511 509
Gauss point depth .

From o, at 02 m 502 4-97 495 494 501 5401 499
depth

*

Table 7. Finite element values of N, (stress field solution, N, =35)

Mesh number (Fig. 5) 1 2 2 3 4 4 4 5 6

(comer element, a: m)| (0-20) | (010) | (0:05) | (0-40) | (0:20) | (0-10) | (0-05) | (0.05) | (0.05)

From nodal reactions 374 | 356 | 357 | 403 | 370 | 360 | 3-57 | 355 | 360

From o, at surface 372 | 3:56 | 357 | 396 | 371 | 364 | 366 | 359 | 3.65

From o, at Gauss 372 | 355 | 3:56 | 394 | 3-68 | 359 | 3.58 - 363
point depth

From o, at 0-2m 371 | 354 | 354 | 392 | 363 | 3-54 | 352 | 352 | 361
depth
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e The value of N, is independent of the depth of the Gauss
points.

The results and the discussion above demonstrate that the
authors statement ‘we are approximating a footing at the Gauss
point depth’ is incorrect. If we consider the irregular mesh (Fig.
5(c)) the following question must be asked: What is the depth
of the footing we are approximating? Consequently, the proce-
dure adopted by the authors of subtracting yd'N, from the
vertical stress cannot be justified. It brings the authors’ finite-
element results into agreement with stress field solutions. The
writers’ results agree with the stress field solutions without such
a procedure (Table 7).

Authors’ reply

The authors would like to thank the writers for their discus-
sion and for the opportunity to clarify some of the points raised
in the paper.

The authors agree that the bearing capacity of surface
footings can be determined by the vertical component of the
stress at the first row of Gauss points or by determining the

equivalent nodal reactions (this was mentioned in the paper).
The writers’ comment that ‘in the writers’ experience the use of
the vertical component of the stress in the ground is not reliable
for the calculation of the bearing capacity in displacement
controlled analysis’. However, if we compare the results pre-
sented by the writers themselves for the calculation of both N,
and N, (rows 1 and 3 in Tables 6 and 7) we see that, in
general, the Gauss point depth method actually gives better
results when compared to the analytical solutions (Tables 8
and 9).

The authors have recently found that provided a correction is
made for the singularity at the footing edge the values
computed by either method give remarkably similar results at
failure. This is shown in Fig. 6, where a non-linear elastic
strain-hardening/strain-softening constitutive soil model is used
to predict &, for smooth surface strip foundations on Nevada
sand using a Lade and Duncan failure criterion. The model is
more suitable to granular foundation analysis as it accurately
simulates dilation effects and the reduction in ¢ with confining
pressure.

The main aim of the paper was to show that using a linear

Table 8. Percentage errors for each method for the calculation of N, (positive unconserva-
tive result/negative conservative result), from Table 6

Mesh number 1 2 2 3 4 4 4
From nodal reactions 3»7 16 10 70 29 16 16
From o, at the Gauss| —04 [, ~06 ~0-4 -3-1 -12 —-0-6 -1-0

point depth

Table 9. % errors for each method for the calculation of N, (positive unconservative result/

negative conservative result), from Table 7

Mesh number 1 2 2

From nodal reactions 70 17 2:0
From o, at the Gauss | 63 14 17
point depth

15 57 2:9 20 14 29
13 51 26
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Fig. 6. Comparison of the Gauss point and nodal reaction methods
for the computation of N, at a constant B/d ratio using an
advanced soil model

elastic perfectly plastic Mohr—Coulomb constitutive soil model
the bearing capacity factor N, is not a function of the founda-
tion width. This was achieved by using the non-dimensional
ratio B/d (footing width/first element depth), as it was observed
that the computation of N, was mesh-dependent, explaining
why previous authors had reported a variation with footing
width. The paper showed that if the B/d ratio was kept constant
then, for a ‘uniform’ mesh, the same value of Ny could be
computed regardless of the foundation width. The paper went
on to show that values of IV, reduce towards those proposed by
Bolton & Lau (1993) as B/d increases. The writers agree with
the authors that N, is mesh-dependent and does not vary with
the footing width. However, they comment that ‘the value of
N, is independent of the depth of the Gauss points’. This
suggests that the same value of N, can be computed regardiess
of the depth of the first row of elements. This is clearly
incorrect. For example, one would not expect to compute the
same value of N, if the depth of the first row of elements
increased from d =0-Imto d = 10 m.

As commented earlier, the authors have found that the
singularity at the footing edge can significantly effect the results
due to the development of out-of-balanced forces Frydman &
Burd (1997) described a stress correction procedure to account
for this. They commented that;

the contact stress at the edge of the footing should be zero. It
appears then, that the upward displacement of the curves may
correspond to errors introduced due to the singularity at the
footing edge, and that a correction to the bearing pressure may
be obtained by moving the curves downwards so as to give a
zero edge stress. This is equivalent to subtracting the edge
stress from the calculated bearing capacity.

The curves referred to are the contact normal stresses at failure
under the footing. This type of stress correction was not applied
in the authors’ paper, explaining the higher values of N,. The
authors are unsure as to whether this type of correction was
used by the writers. Furthermore, while the writers quote results
to two decimal places, they give no information on their
plasticity algorithm. The writers suggest that a small element
should be included next to the footing edge to ‘refine’ the ‘mesh,
However, as the writers did not put this approach into a non-
dimensional form for other foundation widths, it is unwise to
apply it for general foundation analysis. If refinement of indivi-
dual elements is to be considered, a better approach would be
to use adaptive mesh refinement. The approach taken by the
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Fig. 7. Plots of NV, for various B/d ratios from Tables 3 and 4

authors’ is therefore justified in its simplicity and practicality,
requiring no special treatment of the mesh.

The authors’ comment, ‘we are approximating a footing at
the Gauss point depth’ simply refers to the fact that a correction
must be applied to account for the initial surcharge at the Gauss
point depth where N, is actually coputed, this is especially
important when the friction angle is small. Fig. 7 shows plots
of N, from Tables 3 and Table 4. Two approaches were consid-
ered: (a) subtract yd' or (b) subtract yd'N,. In the paper the
former correction still resulted in higher values of N,, and so
was not included. However, the latter correction is justified as it
resulted in conservative estimates of N, when compared to
Bolton & Lau (1993), as stated in the paper. It should be noted
that the bearing capacity factor Ny would be calculated in
exactly the same way as N, if all Gauss points were set to this
initial surcharge value. The latter correction can therefore be
used to ensure conservative estimates of N, whenever the exact
solution is unknown, especially when considering dilatancy.

In the search for accuracy, more advanced constitutive soil
models become attractive in their ability to reproduce shear—
dilatancy coupling and the dependence of the friction angle on
the mean effective stress. However, with a correction for the
singularity and an appropriate B/d ratio, good estimates of N,
are still possible for uniform meshes with simple linear elastic
perfectly plastic models when compared with analytical solu-
tions.

Finally, it should be remembered that the rigid-plastic theor-
ies (e.g. Prandtl), take no account whatsoever of the material
stiffness. It is hardly surprising therefore, that elastoplastic
calculations with back-figured nodal reactions always come out
higher due to the additional contribution of shear stresses in the
material just outside the footing edge. Stress averaging there-
fore, where only those Gauss points beneath the footing are
considered, is a practical way of avoiding these excess loads.
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