Possibilities and limitations of finite elements for limit analysis
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de Borst and Vermeer have presented solu-
tions to a variety of collapse-load problems of
interest in soil mechanics. Of particular note was
the stable solution to a footing on a c—¢ soil
with an associated flow rule as a previous at-
tempt (Griffiths, 1982) to use a high friction
angle of 40° resulted in very slow convergence.

Some of the solutions quoted in the paper and
elsewhere (de Borst 1982, de Borst & Vermeer,
1982), however, are worthy of comment, as they
experienced an overshoot of the ‘correct’ failure
load before levelling out at larger displacements.
It is accepted that the solutions were obtained
from a displacement controlled approach, but is
it not likely that this type of numerical softening
would cause difficulties with load control? In
such cases, load control would predict a failure
load corresponding to the peak of the load
displacement response.
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Fig. 1. Meshes for the trapdoor problem:
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Although generally stable results were ob-
tained using associated flow in the problems
considered, this was not the case when the de-
gree of non-association became large. Indeed,
de Borst and Vermeer assert that in other publi-
cations the use of non-associated flow rules has
been restricted to friction angles of 30° ‘at the
most”. This is not true in general as stable results
have been published by Zienkiewicz, Humphe-
son & Lewis (1975) for triaxial tests (6 =45°,
¥ =0) and Griffiths (1980, 1982) for earth pres-
sures (¢ =40°  =0) and bearing capacity (¢ =
35° ¢ =0). In the latter cases, it was observed
that convergence was slightly improved by the
use of a non-associated flow rule.

The trapdoor problem was particularly inter-
esting in that the post-peak softening was
thought to be mainly due to a change in the
mechanism to a localized vertical shear band.
Physically, such softening has been explained by
Vardoulakis, Graf & Gudehus (1981) to be due
to a changing mechanism in conjunction with a
reduction in the mobilized friction angle from its
peak value to its critical or residual value. It is
difficult then to envisage how a finite element
solution could model such a phenomenon with-

out the friction angle being reduced during the
computations according to some softening
stress—strain law,

The trapdoor problem has been repeated with
the two quite different meshes in Fig. 1. The
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problem
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algorithm used was of the initial stress type with
correction factors applied as described by Nayak
& Zienkiewicz (1972). Although a global con-
vergence criterion was applied to the whole
mesh, close scrutiny was continually made of the
individual Gauss points to eliminate overshoot
almost completely. Displacements were applied
to the trapdoor and the average stress was com-
puted from the nodal reactions. As shown in
Fig. 2 both meshes generated a reasonably
smooth build-up of stress giving failure loads in
agreement with the range of solutions given by
Vardoulakis et al. (1981).
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Authors’ reply

In most of our solutions we observed an over-
shoot of the correct failure load, followed by a
softening until a limiting value had been reached
after which we could impose displacement incre-
ments at constant load. Such a procedure is
possible for displacement control. We agree that
for load control the iterative procedure would
diverge at the peak of the load—displacement
curve and this load level would incorrectly be
identified with the ultimate failure load. This is
because we are not able to trace post-peak
responses with load control. To overcome this
basic deficiency of load control, the load level is
replaced as the parameter that controls the load-
ing process by the arc length of the load—dis-
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Fig. 3. Arc length as control parameter

placement curve in the generalized load-
displacement space (Fig. 3). Such an approach
was followed originally by Riks (1979) and was
modified for implementation in existing finite
element codes amongst others by Crisfield
(1981). The technique was applied to geotechni-
cal problems by Casciaro & Cascini (1982) and
by de Borst (1984). An example of an originally
load-controlled problem is the slope stability
analysis of Fig. 4. When the weight of the soil is
incremented to simulate a centrifuge test the
numerical procedure will fail near peak. With
the arc length method we are able to obtain a
converged solution also at peak strength and to
continue the solution beyond the peak.

The slope stability problem is also of interest
in that it shows that the overshoot of the correct
collapse load diminishes if we employ a tighter
convergence tolerance. This is another point
raised by Griffiths and Koutsabeloulis, i.e.
whether the post-peak softening that we experi-
ence is physical or merely numerical. For most
problems that we considered, the softening was
thought to be due to the convergence tolerance.
A clear example of numerical softening is shown
in Fig. 4. We made an exception for the trap-
door problem where the softening was thought to
be due to the use of a non-associated flow law at
least partially. Griffiths and Koutsabeloulis have
recalculated this problem with a tight con-
vergence tolerance and obtained a failure load
which was below the load presented in our
Paper. Here it is unfortunate that an error has
crept into the scale of the vertical axis. The
number 3 should be replaced by 2, and the
number 2 should be read as 1-5 for the value of
the normalized uplift force. With this correction
we obtain a peak strength of 1-95 which is
slightly in excess of the 1:87 calculated by
Griffiths and Koutsabeloulis. This is probably
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a tight convergence tolerance

due to the fact that they used a tighter con-
vergence tolerance. To clarify this matter, we
also performed a calculation with a very tight
convergence tolerance, and we imposed a tight
energy norm in addition to monitoring each
individual Gauss point. This resulted in the
curve shown in Fig. 5. The peak is now at 1-86
which indicates that our tolerance for this cal-
culation is at least as tight as the criterion
employed by Griffiths and Koutsabeloulis.
Nevertheless we again observe a post-peak sof-
tening when we continue the calculation beyond
peak strength, For a greater embedment ratio,
the softening effect becomes more pronounced.
This is represented in Fig. 6, which gives results
for the same material properties but for an
embedment ratio of h/D =4-0.

In our Paper we stated that the global
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experiment on an overconsolidated soil

post-peak softening response for the trapdoor
problem was partly physical without giving an
explanation for the phenomenon. If we employ
an associated flow rule in conjunction with a
perfectly plastic model, softening is impossible.
Then, Drucker’s postulate holds, so that

&TeP=0—>6"e=¢"¢=0 (1)

so that softening is precluded. For non-
associated flow rules, we may have &£ <0, and
as a consequence we have the possibility that

ge=0"(&°+E)<0 (2)

This softening post-peak response may also be
demonstrated by considering a shear box experi-
ment on an overconsolidated soil (Fig. 7). Here,
the elasto-plastic differential stress—strain law

— has been integrated by a simple numerical integ-
ration formula. The residual shear strength is

th piver by cos ¢ sin ¢
o I s e o
U —sin ¢ sin Y

3

with o,, and o, the shear and the normal stress
respectively, and ¢ and ¢ are the friction and

dilatancy angles. However, a higher peak
strength may be found. Depending on the initial
stresses the peak strength can be as high as
Oyy = Oyy tan ¢.

It is recognized that a reduction in the friction
angle also leads to global softening behavipur.
In experiments, the reduction in the friction
angle, geometrical effects and the non-
association are probably all responsible for the
observed global softening. Yet, global softening
can be explained from a non-associated flow
rule alone and we have demonstrated this
through the examples of a trapdoor and of a
shear box. A more detailed treatment of this
type of softening is given by Vermeer & de
Borst (1984).

A final remark concerns the stability and con-
vergence characteristics of the iterative proce-
dure for higher friction angles (¢ =>30°).
Griffiths and Koutsabeloulis report that some
other solutions for high friction angles have
been presented. This is true and it is a pity that
we were unaware of Griffiths’ thesis (1980). An
important conclusion from his thesis is that ‘con-
vergence was much slower in the analysis of
bearing capacity than earth pressure’. Earth
pressure problems are relatively simple and so is
the compression problem by Zienkiewicz,
Humpheson & Lewis (1975). For these prob-
lems converged solutions were presented respec-
tively for ¢ =40° and for ¢ = 45°, Griffiths
(1980), however, also states that ‘due to the
complex confinements in the bearing capacity
problem, convergence could rarely be achieved
in a reasonable number of iterations when ¢ >
30°. This is virtually in line with our experi-
ences, but we also reported the following. When
using a friction angle of 40° in conjunction with
an associated flow rule both the strip footing and
the circular footing problem converged.
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Moreover we obtained converged solutions for
moderate differences between the friction angle
and the dilatancy angle. For a large difference
between the friction angle and the dilatancy
angle (¢ =40° and ¢ = 0°) we could not obtain a
converged solution. This indicates that the de-
gree of non-normality is an important factor and
that a high degree of non-normality deteriorates
convergence. The magnitude of the friction
angle is another factor which influences con-
vergence. This influence can be demonstrated by
the cone indentation problem of Fig. 8 which
was studied by Zaadnoordijk (1983). For the
same degree of non-normality (¢ —y = 30°) the
solution becomes more unstable and the compu-
tational effort increases with increase in friction
angle. Zaadnoordijk (1983), however, also
found that the solutions became more stable for
the same friction angle when he reduced the
difference between the friction angle and the
dilatancy angle.
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