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Abstract 

Traditionally the analysis of footings on the surface of granular soils using finite 
elements has been difficult. This has generally led to a noticeable lack of published 
work in this area, especially for rough footings situated on the surface of granular 
soils with friction angles greater than 35 ~ . The majority of published work has 
concentrated on the use of simple elastic perfectly plastic soil models, due to the 
computational difficulties and run times involved. In the present study a combined 
multi-surface isotropic & kinematic hardening model is used to study the behaviour 
of foundations on granular soils. The model gives a much more realistic account of 
material behaviour and therefore advances the state of the art in this area. The paper 
confirms the work of De Beer in which a reduction in Ny was observed for increasing 
foundation widths. The paper highlights problems due to the development of 
singularities adjacent to the footing edge and confirms earlier work, using a simpler 
model, on the influence of the element depth under the footing on the computed 
bearing capacity. The paper concludes by presenting the allowable bearing pressures 
for three different sands as a function of the footing width. 

lntroduc~on 

The bearing capacity of a foundation situated on the surface of a granular soil is 
usually determined by Terzaghi's equation 

qi = {s, rBN, (1) 
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where, s r is a shape factor (equal to 1.0 for a strip footing and usually set to 0.6 for a 
circular footing), ?'is the effective unit weight, B is the footing width or diameter and 
N r is the bearing capacity factor. This factor is usually determined by considering 
several different analytical formulae each giving a different value of Nr; the friction 
angle ~ is usually assumed to be constant, de Beer (1965) showed that Nr is in fact a 
function of the foundation size, decreasing as the foundation width increased. The 
main reason for this decrease was explained through the dependence of the friction 
angle on the confining pressure (the larger the foundation, the larger the confining 
pressure at failure) and a grain size effect due to progressive failure. Yamaguchi et al 

(1976) showed that the grain size effect is only important beyond the peak. This 
suggests that localisation effects are only important once the peak resistance has been 
achieved, the nature of the post peak softening curve for the footing would then be 
dominated by the localisation. This means that the constitutive soil model used in the 
analysis would require a material length formulation to model post bifurcation 
behaviour. 

Since it is only the peak resistance of the foundation that is of interest here, the 
main reduction in N r is therefore likely to be due to the pressure dependence of 
only. Hettler & Gudehus (1988) showed that the friction angle for a variety of sands 
of different initial densities varied by around 2 degrees in the pressure range 100-500 
kPa. The majority of finite element analyses have been performed using simple elastic 
perfectly plastic Mohr-Coulomb constitutive soil models. These types of models do 
not realistically simulate the real observed behaviour of granular foundations as they 
do not simulate the deformation or strength characteristics of the soil very well. 
Recent attempts to compute N r using simple models have been performed by Griffiths 
(1982), Simonini (1993), Manoharan & Dasgupta (1995) and Frydman & B u r d  
(1997). Woodward & Griffiths (1998) showed that any reductions in N r computed 
using these simple models was due to mesh effects and that its absolute value was 
related to the depth of the first row of contact elements when a 'uniform' mesh was 
used. By using a simple technique, they showed how lower values of N r could be 
obtained, which tended towards 'analytical' solutions as the element depth reduced. 

It has been suggested that more accurate values o f N  r can be obtained when the 
element adjacent to the footing is refined. The work presented in this paper shows 
however that fixing the comer element can still lead to difficulties in mesh 
dependency when the first element depth is varied. If the foundation width is to be 
investigated, one must ask what size must the comer element be for a given 
foundation roughness, size and shape? Woodward & Griffiths (1998) suggested that 
one should try to use B/d>=10 for uniform meshes to overcome mesh dependency 
problems, where d=depth of  the first row of elements under the contact nodes. The 
B/d  ratio should also be kept constant when the footing width is varied. If refinement 
is to be used in favour of a uniform mesh, then adaptive mesh refinement would seem 
to be the next logical step to overcome problems associated with the refinement of a 
single element. This approach may also help to overcome localisation problems. 
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The principal reason why Woodward & G-riffiths (1998) were unable to directly 
compute the analytical value o fN r (for an idealised foundation, as given by BoRon & 
Lau, 1993) was due to no correction being applied due to the development of 
singularities. The work present here clearly shows these singularities developing at 
the Gauss points adjacent to the footing edge as deformation increases. The real 
value of N,  for a given foundation, is a function of the stress-strain characteristics of 
the soil. For example, its value is not only a function of the mean stress, but also the 
dilatancy properties, increasing with dilatancy angle. It is therefore essential that 
realistic soil models are used, calibrated to real soil behaviour. In this work an 
advanced multi-surface kinematic soil model is used as it accurately simulates the 
observed stress-strain behaviour of granular soils. 

Although the computation of N r is of importance in foundation design, the 
primary concern is still settlement behaviour. The simple models applied to date in 
granular foundation studies cannot simulate settlement behaviour very well and so 
advanced models must be used if the state of the art is to be pushed forward. 
Realistic simulation of soil allows the computation of the allowable bearing pressures 
used in general design to be determined. The allowable pressure often represents the 
bearing pressure at 0.04m settlement and is investigated here for the soils considered. 

Constitutive Soil Model AL TERNA T 

Often advanced soil models are only used to demonstrate the simulation of triaxial 
stress paths. One can only assume that these models are not yet implemented into a 
more useful general purpose finite element program. In this paper, the elasto-plastic 
multi-surface kinematic constitutive soil model ALTERNAT (Molenkamp, 1982, 
1990) is used. This model has been shown to be able to analyse a wide range of 
problems involving differing stress paths (Molenkamp 1990, Woodward, 1993), 
including granular foundation behaviour (Nesnas & Woodward, 1999 and Woodward 
& Molenkamp, 1999). The model can simulate both the monotonic and cyclic 
behaviour of granular soils. For the purposes of this paper only the most salient 
features of the model for monotonic footing analysis are included. 

The following effective stress invariants are used in the outline description of 
the model. The isotropic stress s and the isotropic strain v respectively can be 
calculated from the following expressions 

1 1 = ~ o , , ~ , ,  and v = ~ , , j s , ~  (2)  

where, a,j is the Cauchy stress, % is the strain and 8,j is the Kronecker delta. The 
deviatoric stress t and the deviatoric strain e can be obtained from the following 
expressions 
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,= (~,st,5 and e :  ~ (3) 

where, t,j is the deviatoric stress tensor and e,j is the deviatoric strain tensor. In 
ALTERNAT the plastic properties are calculated in the co-rotational frame, which 
means that they are determined with respect to a set of axes that rotate with the 
material during deformation. The non-linear elastic component of the model is based 
on the following complementary potential function Q after Molenkamp (1992) 

Q=A p~ (s'-s ] (4) 
(P+l)tpa) [ 4R t,s) j 

where, the scalars A, P and R are the elastic material parameters and Pa is the 
atmospheric pressure (assumed to be 100 kPa). The inverse of the elastic tangent 
stiffness matrix D,j-klt is the second order partial derivative of equation (4). 

TO simulate the initial anisotropy of the soil, or to simulate stress-induced 
anisotropy during loading, the yield surface is centred around a non-zero deviatoric 
stress state when viewed in the deviatoric plane. A pseudo stress T j is now used to 
represent the mobilised friction 

T,~ =a~ -~kl~ktr (5) 

where, %j is the 'active' stress and ~,j is a non-dimensional deviatoric tensor of 
anisotropy. The hardening modulus (or plastic stiffness) of the soil changes as the 
yield surfaces expands and moves in the deviatoric plane. The shape of the yield 
surface is given by the Lade & Duncan (1975) and Lade (1977) smooth conical 
surface 

13 ,+ so<): o (6) 

where, ;r is the hardening parameter andf(.r) is the size of the yield surface. 11 and 13 
are the first and third invariants of the pseudo-stress respectively. 

The plastic stiffness of the soil it determined through the hardening modulus 
H. The hardening modulus is related to the pre-peak strain hardening and post-peak 
strain softening behaviour of the soil. For isotropic hardening, the hardening modulus 
H is found from the following equation 
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where, 

,,= ": ; (7) 

d f  _ 81 ! t /  s 

d(t)  - [l+x/2(st-)] [1-~2-2/st-)l 
(8) 

This expression is determined by rearranging equation (6) and substituting for the 
stress invariants 11 and I~ by the shear stress level (x) for triaxial compression. 

The ~ component of equation (7) is obtained by considering the strain hardening 

and softening behaviour of the material and differentiating with respect to the 
hardening parameter. If the pre-peak straining hardening shear stress level is Y~ and 
the post-peak shear stress level is Y2 a smooth transition from Y~ to/12 is given by 

t )=  Y ~ 5  (9) 

where, n is a material parameter and can be chosen to ensure that the correct peak 
shear stress level is observed. The function at the latter part of equation (7) is used 
to simulate cyclic densification using the porosity n,, the accumulated plastic 
volumetric strain Z~Ats the hardening parameter Z and the isotropic stress level 

S - - .  ]11 and Y2 are obtained from the following 
P, 

II l eP 
. ~ . ( l O )  

Y'= s )  (1 + e~)E 

LL ) 

Y2 = M((1 - u) + v.exp(-v(~/) } exp(-fl% ) (ll) 

where, E, Q and D are the pre-peak strain hardening parameters and M, v, ~, and fl 
are the post-peak strain softening parameters. The pre-peak strain hardening and post 
peak strain softening shear stress levels are therefore related to the mean isotropic 
stress level (s/pa),  the void ratio ev and the plastic deviatoric strain e e. This will 
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obviously have a significant effect when looking at the reduction in N r with footing 
width (the larger the footing width, the higher the mean stress at failure). 

In ALTERNAT, the direction of the plastic strain increment is first 
decomposed into an isotropic and a deviatoric component. The isotropic component 
a~,~ is based on Rowe's stress-dilatancy theory (1962, 1971) for granular soils and is 

obtained from the plastic dilatancy ratio. 

+ - - 2  
&T,j l, ~', j  

dv p where = ax/3 (12) 
de p 

Molenkamp (1982, 1990) has developed several expressions to determine the 
plastic dilatancy ratio for loading/unloading in triaxial compression and extension. A 
function is then used to look at other Lode angles. The characteristic shear stress 

('1 level s ~ at zero dilatancy is obtained from the true interparticle friction angle ~/~, 

using the following 

7~t  =C (l+~)-~exp -Op -~  [l-exp(-6"ev) ] (13) 

where, C, r 4" and 0p are material parameters. As the isotropic stress increases the 
shear stress level at which dilation will occur also increases, simulating the reduction 
in dilation with high confining pressures. This is an important characteristic in 
foundation problems since N r is strongly dependant on the dilatancy angle of the soil. 

The deviatoric component of the plastic potential is based on the 

expression used to determine the yield function, except that a reduced modified 

pseudo-stress T is used to make the deviatoric potential surface more circular in the 
deviatoric plane. 

The critical state of the model is formed by equating the post-peak shear 
stress level (equation 11) to the shear-stress level at zero dilatancy (equation 13) to 
give 

exp(-fle") =[ M{(1-v)+vexp(-~/( ~a )]}+C{(l+')-~expl-Op( ~'~" ]]} 1-1" (14) 
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The void ratio at the critical state of the material is therefore dependant on the 
post-peak strain softening parameters, the true interparticle friction angle parameters 

and the isotropic stress level at the critical state I s_~_). In total there are 24 material 
/ 

parameters associated with the model, however only 6 parameters are required to be 
determined from triaxial compression tests for monotonic loading, the remainder can 
be considered as constant. The current capabilities of the model are: non-linear 
elasticity; pre-peak strain hardening; post-peak strain softening; dilatancy based on 
Rowe's stress-dilatancy theory; critical state; cyclic mobility and densification; tensile 
strength. The cyclic capabilities of the model are not used in the present work. 

The material parameters used in the calibration of the model to the different 
sands used in this study (Hostun ?=16.30 kN/m 3, Nevada ?==15.14 kN/m 3 & Ersak 
?=16.25 kN/m 3) can be found in Nesnas & Woodward (1999) and Woodward & 
Molenkamp (1999). However, an example of the calibration of  the model to Nevada 
sand is shown in Figure 1. Here, the model is calibrated to the sand at a relative 
density of Dr=40% (?=15.14 kN/m 3) at confining pressures of crc=40,80 and 160 kPa. 

250 ~(r)=160 kP-~a 

~oo ' ~ -  

~150 
a(r)=80 kP~ ~ 100 - -  - 

.~ ~(r)=40 kPa 

I~ 50 measured 

. . . .  simulated 
0 

0.00 0 .04  0 .08  0.12 0.1 
Axial Strain 

1.0 

._= 
~-14 
(/) 
o 
-=--2.6 
6) 

-6-3.8 > 

-5.0 

(b) 

Contraction o(0=160 kPa 
~(0=80 kPa 

" ~ ~  o(0=40 kPa 

. . . . .  

Dilation 

mcasurc~d 

simulated 
i i . . . .  i 

0.00 0 .04  0.08 0.12 0.1q 
Axial Strain 

Figure 1 Calibration of ALTERNAT to Nevada sand at y= 15.14kN/m 3 

Computer Program FAL TICA 

In general, the first author has termed the finite element program used in this paper 
FALTICA (Footing ALTernat Incremental Computer Algorithm). The program uses 
8-noded quadrilateral finite elements and a 2x2 integration rule (Smith & Griffiths, 
1988 & 1998). A constant stiffness matrix is adopted as the reference and an iterative 
procedure is used to correct the unbalanced plastic forces with a note kept on which 
yield surface is currently active for stress redistribution. 

The bearing stress at failure is calculated using three different methods. The first 
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method (termed q_avg) simply averages the vertical component of the Gauss point 
stresses (9)  directly under the footing 

2n 

Z R X t y y  

q_avg = 1 - - - - - ~  (15) 
2n 

where, n is the number of direct contact elements and R is the element stress scaling 
factor for axi-symmetry / plane strain. The second method (termed q_bts) determines 
the equivalent vertical nodal forces for the direct contact elements only 

q_bts- i 
Footing Area 

(16) 

where, Br--transpose of the strain-displacement matrix. The third method (termed 
q bts o) determines the equivalent vertical nodal forces for the direct contact 
elements and includes contributions from the adjacent elements next to the footing 

q_b t so  1 (17) 
Footing Area 

Where, m is the number of surface elements. A correction for the initial surcharge is 
made in all three methods. 

Finite Element Analysis 

Figure 2 shows the mesh used in the analysis. The footing is assumed to be rigid and 
circular or strip in cross section. The interface between the footing and the soil is 
assumed to be perfectly rough and the footing is subjected to equal displacement 
increments applied to the vertical degrees of freedom at the contact nodes 
(restraining the horizontal degrees of freedom at the contact nodes simulates the 
rough condition). The rough analysis is used to demonstrate the robustness of the 
finite element implementation. 

The footing widths/diameters considered were B=lm to 6m. The procedure 
proposed by Woodward & Griffiths (1998) was used to determine the first element 
depth for all footing sizes. The mesh size is 10B x 10B and the mesh boundary 
conditions are; fully restrained at the base of the mesh and free vertical movement 
only along the sides. The initial vertical stress is set by multiplying the vertical 
distance of the Gauss point from the surface of the sand by the unit weight y of the 
soil The horizontal stresses are then set by multiplying the vertical stresses by the 
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earth pressure at rest coefficient Ko. It was found that the value Ko did not 
significantly influence the results and so was set at Ko= l for convenience. 

IIIIIII1[ I [ I [ I I I 
I H I I I I I I I  I I 
IIIIIIIII11111 I I 
IIIIllllllllll I I 
IIIIIIIIIIIIII I I 
Illlllltllllil l I 
IIIIIIIIIIIIIII I 
IIIIIIIII1[]111 I 
IIIIIIIIIIIIIII I 
IIIIIIIIIIIIIII I 
III[IIHIIIIIIII 

B/2 

Figure 2 Mesh used in footing studies Figure 3 Refinement of the corner 
element 

It has been suggested that the size of the corner element adjacent to the footing has 
an effect on the behaviour of the foundation (e.g. Figure 3). This is not surprising due 
to the development of the singularities shown below. However, attempting to 
determine what the size of this element should be for different foundation widths, 
roughness values, constitutive model, finite element shape, as well as dilatancy 
properties and friction angles of the soil, would prove too cumbersome. This is 
demonstrated in Figure 4, where the comer element for a 2m rough strip footing on 
Nevada sand is fixed at a=0.25m and the remainder of the contact dement depths 
increased. A dependence on the B/d ratio still exists, this suggests that we must keep 
reducing the corner element size for a given foundation width to obtain consistent 
results. 

1400 

~'1200 

~1ooo ....:..:::2.'-'.: , , . . :  s '  

~800 . . 7  ~ �9 

.~n 6 0 0  "x" 2 

4oo 
I I ' - - - - - -  B1a~.,~ 

200 

0 
-0.02 0.04 0.10 0.16 0.2 

Footin Dis lacement x/B) 

Figure 4 Effect of the comer element on the footing response 
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The suggestion of setting B/d>=lO for a uniform mesh (to get consistent 
results) would therefore appear to be more appealing than trying to adjust both the 
corner element and the remainder of the contact elements' depth (it is also more 
practical in many cases). 

Frydman & Burd (1997) commented that the singularity at the footing edge 
could increase the computed value of N r. They suggested correcting the pressure 
distribution under the footing by the computed edge stress. In a real soil, the 
development of this singularity does not first occur at the footing edge however, but 
a small distance away from it. This can clearly be seen in Figure 5, with the 
occurrence of the first singularity at position 3. After some initial strain hardening, 
the stress path follows the failure surface back towards the origin (i.e. zero isotropic 
stress) generating the singularity. In this particular case, it was observed that the ratio 
of bearing stress q to bearing capacity qf, was q/qf=20% when this first singularity 
occurred. 

In FALTICA, all plastic stresses (co-rotational) are redistributed once a pre- 
defined isotropic stress has been reached. This enables the correct pressure 
distribution to be simulated underneath and adjacent to the foundation, by ensuring 
no further increases in shear capacity. The correction can be thought of as a 
sophisticated no-tension type of correction. Since the velocity of the elements 
adjacent to the foundation is upward (the soil is dilating) there can be no contribution 
of the singular Gauss points to the shear strength of the foundation. This means that 
equations (16) & (17) will give the same value at failure. In fact, Figure 6 shows that 
equations (15)-(17) all give the value of the bearing capacity at failure. 

Variation of  N r with Footing Width 

Figure 7 shows the predicted reduction in the peak friction angle with confining 
pressure for Huston, Nevada & Ersak sand. The reduction is of the order of 1.74 
degrees over the 100-500kPa pressure range. This is close to the reduction as 
observed by Hettler & Gudehus (1988). Typical values of the friction angle in triaxial 
compression for the three sands considered are #=36.7 ~ #=34.2 ~ #=33.6 ~ for 
Huston, Nevada & Ersak sands respectively, at a confining pressure of o-c=300 kPa. 

Figure 8 shows the results of finite element simulations for rough circular 
footings on the surface of the three sands considered, for B=I to 6m. The results are 
presented in terms of normalised average pressure 2q/yB beneath the base of the 
footing (equation (15)). It should be noted that the values presented are not 
normalised with respect to a foundation 'shape' factor. The figure clearly shows that 
the bearing capacity factor N r decreases with increasing footing width due to the 
pressure dependence of ~ and tends towards a constant value as B increases. As 
commented earlier, a reduction in the dilation angle with increasing confining 
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pressure is also simulated. This will also contribute to the reduction in N r with 
increasing footing width, 
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Figure 6 Effect of calculation method 
on footing response 

Figure 7 Reduction in the peak friction 
angle with confining pressure 

The allowable bearing pressure for an isolated footing is often defined as the value of 
the pressure at which a settlement of 0.04m occurs. Although other settlement values 
have been proposed in the literature, this value is used here to determine the 
allowable bearing pressure, 
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footing width for a rough 
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Figure 9 shows the variation of the allowable pressure (again normalised to N r St) 
with footing width for the three sands considered. As expected, the allowable 
pressure decreases with footing width. In fact, the authors have found that the 
allowable bearing pressure varies with footing roughness, shape, and size as well as 
the soil type. Although not considered here, an overall allowable bearing pressure 
could be determined by considering the factor of safety of each footing width as well 
as the computed settlement response. 

Conclusions 

The footing width B to first element depth d ratio (B/d) has an effect on the 
computed bearing capacity of a footing on the surface of granular soil. For a uniform 
mesh, this effect can be minimised using values of B/d>=10 (in fact values of B/d>=7 
have been found in this work to provide sufficiently accurate values of Nr). The 
singularity developed at the footing edge can influence the bearing capacity of the 
foundation and must be accounted for. The computer program FALTICA was shown 
to be able to simulate the decrease in the bearing capacity factor N r with increasing 
foundation width. This is due to the simulated reduction in peak friction angle and 
dilatancy properties with increasing confining pressure. 

The allowable bearing pressure also reduces as the footing width increases. 
This reduction is related to the footing size, roughness and shape as well as the soil's 
stress-strain characteristics. It would seem that accurate simulations of granular 
foundation behaviour using finite elements can only be achieved when more realistic 
constitutive soil models are used. 
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