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ABSTRACT 

 

The paper contrasts results obtained by the traditional First Order Reliability Method 

(FORM) and a more advanced Random Finite Element Method (RFEM) in a 

benchmark problem of slope stability analysis with random shear strength 

parameters. The key difference between the methods is that RFEM takes into account 

spatial correlation in a rigorous way allowing slope failure to occur naturally along 

the path of least resistance. Both methods lead to predictions of the "probability of 

slope failure" as opposed to the more traditional "factor of safety" measure of slope 

safety, however they give significant different results depending on the value of the 

correlation length. For small correlation lengths FORM is generally conservative, 

however it is shown that there is a “worst case” correlation length for which FORM 

leads to unconservative predictions of slope reliability. 

 

INTRODUCTION 

 

  Slope stability analysis is one of the main areas of interest to geotechnical designers, 

and also seems a natural application for probabilistic approaches since the analysis 

leads to a “probability of failure” as opposed to the more customary “factor of 

safety”. This paper will review a traditional approach to probabilistic slope stability 

analysis, the first order reliability method (FORM) and then go on to discuss the more 

advanced random finite element method (RFEM). The methods will be compared on 

a benchmark slope and conclusions will be drawn regarding the limitations of FORM, 

in particular, the effect of the spatial correlation length which can be rigorously 

modeled by RFEM. 
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FIRST ORDER RELIABILITY METHOD 

 

Theory 

  The first order reliability method (FORM) is a process which can be used to 

determine the probability of a failure given the distribution data and limit state 

function. The method is based on the Hasofer-Lind reliability index (Hasofer and 

Lind 1964), HL, which can be described as the distance, in standard deviation units, 

between the most probable set of values and the most probable set of values that 

causes a failure. Calculation of this value is an iterative process, finding the minimum 

value of a matrix calculation subject to the constraint that the values result in a 

system failure. However, common solver routines found in several software packages 

(e.g. Excel and Mathematica) can easily arrive at the solution. Once the reliability 

index has been determined, the probability of failure, Pf, is a simple calculation.  

 

Limit State Function 

  Each reliability analysis requires a limit state function, which defines failure or safe 

performance. Limit states could relate to strength failure, serviceability failure, or 

anything else that describes unsatisfactory performance. The limit state function, g, is 

defined 
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where N is the number of random variables. Often it is sufficient for the limit state 

function to be the resistance minus the load. Other common forms of the limit state 

function are the factor of safety minus one and the logarithm of the factor of safety. 

 

  The limit state function can be determined from analytical theory for simple 

systems. For more complex systems, it may need to be approximated numerically 

with curve fitting. 

 

Hasofer-Lind Reliability Index 

  The reliability index, HL, is the distance in standard deviation units between the 

most probable set of random variables (the means), and the most probable set of 

random variables that causes a failure. Determination of HL is an iterative process 

and it is defined by  
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where {(xi–i)/i} is the vector of the random variable values reduced to standard 

normal space and  R  is the correlation matrix of the variables. 
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Visualization 

  To better understand and visualize this method, consider the following arbitrary 

problem. Two random variables, x1 and x2, are normally distributed and have the 

following parameters:  
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  Failure of the system is given by the limit state function: 
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  The probability density function governing two normal random variables correlated 

by  can be written as (e.g., Fenton and Griffiths 2006): 
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where 
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  Note that the minimum value of  21, xx , given that the limit state function is zero, 

is the Hasofer-Lind reliability index, HL.  

 

  Plotting the probability density function in three dimensions would result in a 

surface in the shape of a bell. By definition, the volume under the surface is unity. 

The limit state function divides the volume into a failure region and a safe region. 

The probability of failure is defined as the volume under the probability density 

function in the failure region. FORM uses a first order approximation of the limit 

state function and therefore the calculated probability of failure is also approximate. 

Numerical integration of the probability distribution function in the failure region 

leads to more accurate results and is discussed later.  

 

  In plan view, the probability density function can be visualized as a contour plot 

involving a series of ellipses, and the limit state function can be seen as a line 

separating the failure and safe regions, see Figure 1. The contours in Figure 1 are 

actually contours of (x1,x2) (i.e. (x1,x2) = 1, 2, 3, 4…), nevertheless, each contour 

represents a constant value of the probability density function. 
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Figure 1. Plan View of the Probability Density Function. 

 

    The solid curved line represents the actual limit state function. The smallest ellipse 

that the limit state function touches is the contour of  = HL, represented above by 

the darker ellipse. The point where they meet represents the most probable failure 

point. The dashed straight line that also passes through that point is the first order 

approximation of the limit state function. 

 

  The first order approximation assumed in FORM could lead to an underestimate of 

the probability of failure if the actual limit state function curves towards the mean 

values as seen in Figure 1. A more accurate, yet more time consuming, method to 

determine the probability is to numerically integrate the probability distribution 

function in the region of failure. A relatively simple algorithm involving the repeated 

mid-point rule (e.g., Griffiths and Smith 2006) can be devised to accomplish this task.  

 

FORM software 

Excel 

  The limit state function and properties described in Eq. 3 and Eq. 4 have been run 

through an Excel spreadsheet using the solver add-in (e.g., Low and Tang 1997,  

Denavit 2006) in which the FORM algorithm has been implemented. The Hasofer-
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Lind reliability index is given as HL = 2.40, corresponding to a probability of failure 

of Pf = 0.814% 

 

Mathematica 

  Using Mathematica, the same calculations can be performed. The following shows 

the lines which must be executed: 

 

 
 

  Again, the probability of failure is 0.814%, with a reliability index of 2.40, 

corresponding to a most probable failure point of x1 = 8.15 and x2 = 7.19. Both the 

reliability index and the most probable failure point can be graphically checked using 

Figure 1. 

 

  As discussed earlier, numerical integration can determine the probability of failure 

directly but more slowly.  Below is a set of commands which will perform the 

numerical integration: 

 

 
 

  Numerical integration of the volume of the probability density function 

corresponding to g(x1, x2) < 0 gave the probability of failure 0.964%, relatively 16% 

higher than given by FORM. 
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PROBABILISTIC SLOPE STABILITY ANALYSIS 

 

  For slope stability, no analytical equation exists which can serve as a limit state 

function. In this case, a numerical approximation will need to be formulated to use as 

the limit state function. This can be accomplished by fitting a curve to the results 

from several finite element analyses using the strength reduction method (e.g., 

Griffiths and Lane 1999). This method involves applying gravity loads to the finite 

element mesh and systematically weakening the soil until a sufficient number of 

element have yielded to allow the formation of a failure mechanism.  

 

  For example, with two (N=2) random variables ( , tan )c   , a quadratic surface 

without cross-terms with five (2 1 5)N    constants of the form 

 
2 2

1 2 3 4 5( , tan ) tan tanFS c a a c a a c a                (7) 

 

could be used to approximate the factor of safety function.  

 

  Figure 2 shows the dimensions and properties of a hypothetical sample slope which 

was analyzed using this method. 

 

 
Figure 2. Slope Dimensions and Properties. 

 

  The following parameters were taken as deterministic: unit weight (= 20 kN/m
3
), 

modulus of elasticity (E = 100,000 kPa), Poisson’s ratio ( = 0.3), and dilation angle 

( = 0). It was assumed that there was no correlation between the variables and that 

the variables were normally distributed. The limit state function will then be the 

factor of safety function minus one, thus 

 

( , tan ) ( , tan ) 1g c FS c                      (8) 

 

In order to find the constants in Eq. 7, five finite element analyses were run with the 

following input and results. 

 

 

 

 

 

        2 

              1 

20 20 20 

H=10 

5 

c′ = 5.0 kPa c′ = 1.5 kPa 

tan′ = 0.364 tan′ = 0.109 

c′-tan′ = 0.5 

 

All dimensions in meters 
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Table 1. Sample Points for the Approximate Limit State Function. 

Sample 

Point 

Value of 

c′ 
c′ (kPa) 

Value of 

tan′ 
tan′ 

Factor of 

Safety 

1 c′ 5.00 tan′ 0.364 1.09 

2 c′ + c′ 6.50 tan′ 0.364 1.17 

3 c′ – c′ 3.50 tan′ 0.364 1.00 

4 c′ 5.00 tan′ + tan′ 0.473 1.33 

5 c′ 5.00 tan′ – tan′ 0.255 0.84 

 

Solving for the five constants yields the limit state function: 

 
2 2( , tan ) 0.123 0.079 2.554tan 0.002 0.421tan 1g c c c                          (10) 

 

Implementing this function along with the soil properties into Excel or Mathematica 

as described earlier will yield a Hasofer-Lind reliability index, HL, of 0.301, 

corresponding to a probability of failure, Pf, of 38.2%.  

 

Random Finite Element Method 

 

  The random finite element method (RFEM) is an entirely separate method for 

determining the probability of failure. This method involves a Monte Carlo 

simulation with many different realizations of the soil properties. Each realization of 

the soil properties involves overlaying a random field onto a finite element mesh, 

essentially resulting in each element being a random variable. In doing this, a new 

parameter becomes evident, the spatial correlation length. This parameter describes 

the tendency of elements spatially near each other to be correlated. For slope stability 

problems, it is described in the dimensionless form,  , which is the correlation 

length divided by the height of the slope, H . This parameter can be clearly seen in 

the following two figures of slopes with the same mean and standard deviation where 

the darker elements represent higher strength. 

 

 
Figure 3. Slope with Low Correlation Length. 
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Figure 4. Slope with High Correlation Length. 

 

  Once the properties are assigned, a finite element analysis determines whether or not 

failure occurs, and the process is repeated. The nature of RFEM can lead to quite 

time-consuming calculations compared with FORM, however the latter method does 

not explicitly incorporate the correlation length.  

 

  Since RFEM is based on Monte Carlo simulation, it is important to ensure that the 

number of realizations is sufficient to provide accurate and repeatable results. To 

check this, the slope was analyzed multiple times with increasing numbers of 

realizations. The results of two such runs are shown in Figure 5. Note that the 

dimensionless correlation length, , was set at 0.1 for this analysis. In both cases the 

probability of failure converges to the same constant value as the number of 

realizations increases. It can be seen that 1000 realizations yields sufficiently 

repeatable results and this value has been used in the subsequent analyses. 

 
Figure 5. Probability of Failure versus Number of Realizations. 

 

  To examine the effect of the correlation length on the probability of failure, a 

parametric study was performed. The results of RFEM compared with FORM for the 

slope shown in Figure 2 are shown in Figure 6.  
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Figure 6. Probability of Failure versus Correlation Length. 

 

  For small correlation lengths, the probability of failure is essentially zero, for 

intermediate correlation lengths, the probability of failure increases rapidly, and for 

large correlation lengths, the probability of failure is essentially constant and similar 

to that found by FORM.  

 

  Consider the limits of zero and infinity for correlation length. As the correlation 

length approaches zero, the soil will vary rapidly between any two points and become 

essentially homogeneous, with the soil properties tending to their mean values. 

Assuming the mean values provide a safe design (FS > 1), the probability of failure 

will always be zero. As the correlation length approaches infinity, however, the soil 

across the slope is highly correlated and will not vary. It becomes essentially 

homogeneous within each realization although different from one realization to the 

next. Use of the FORM is therefore equivalent to a system with a correlation length 

tending to infinity.  For intermediate values of correlation length, the slope is not 

homogeneous and anomalies, such as locations of weak areas, control the probability 

of failure since the finite element analysis is able to “seek out” the weakest path 

through the slope.  

 

CONCLUSION 

 

  The first order reliability method is a powerful tool in probabilistic geotechnical 

analysis; however, it fails to explicitly account for the spatial correlation length. In 

the example considered, when the correlation length was small, results produced by 
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FORM were inaccurate and conservative. At high correlation lengths, the FORM 

results tended to agree with RFEM. While traditional methods like FORM or FOSM 

can account for spatial correlation indirectly by including variance reduction, this is 

inevitably subjective, since the local averaging zone cannot be known a priori. A 

number of investigators have attempted to include the effects of spatial correlation by 

locally averaging the random properties over the circular failure surface that would be 

predicted by a classical slope stability method (e.g. Bishop). The RFEM studies 

described in this paper are more realistic and conservative, in that they allow the 

critical mechanism to “seek out” the weakest path through the soil without any a 

priori assumption about the shape or location of the critical failure surface. 

  

Of particular interest for designers is the case when FORM gave unconservative 

predictions. This is due to observation of a “worst case” correlation length ( 1)   

which gave higher probabilities of failure than FORM. At this intermediate 

correlation length, the failure mechanism is able to “seek out” the optimal path 

through the weaker zones of soil and is a phenomenon that has been documented by 

the authors in other geotechnical failure analyses by RFEM (e.g. Griffiths and Fenton 

2001, Fenton and Griffiths 2003) 
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