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Abstract

Modern geotechnical design codes are migrating towards Load and Resistance
Factor Design (LRFD) methodologies. The Danish geotechnical code has been based on
LRFD for several decades, but more recently the Eurocode and the Australian Standards
have turned in this direction. Where the geotechnical system supports a structure,
the load factors are generally determined by the structural codes. The geotechnical
resistance factors, typically determined by calibration with traditional working stress
(or allowable stress) design, have yet to be clearly defined in geotechnical design codes.
Research into the reliability of geotechnical systems is needed in order for resistance
factors to be determined.

This paper presents the results of a preliminary study into the effect of a soil’s
spatial variability on the settlement and ultimate load statistics of a pile. The results are
used to provide recommendations on approaches to reliability-based deep foundation
design at the serviceability and ultimate limit states.

Introduction

Deep foundations, which are typically either piles or drilled shafts, will be hereafter
collectively referred to as piles for simplicity in this paper. Piles are provided to transfer
load to the surrounding soil and/or to a firmer stratum, thereby providing vertical
and lateral load bearing capacity to a supported structure. In this paper the random
behaviour of a pile subjected to a vertical load and supported by a spatially variable soil
is investigated.

The resistance, or bearing capacity, of a pile arises as a combination of side friction,
where load is transmitted to the soil through friction along the sides of the pile, and
end bearing, where load is transmitted to the soil (or rock) through the tip of the pile.
As load is applied to the pile, the pile settles – the total settlement of the pile is due
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to both deformation of the pile itself and deformation of the surrounding soil and
supporting stratum. The surrounding soil is, at least initially, assumed to be perfectly
bonded to the pile shaft through friction and/or adhesion so that any displacement of the
pile corresponds to an equivalent local displacement of the soil (the soil deformation
reduces further away from the pile). In turn, the elastic nature of the soil means that this
displacement is resisted by a force which is proportional to the soil’s elastic modulus
and the magnitude of the displacement. Thus, at least initially, the support imparted
by the soil to the pile depends on the elastic properties of the surrounding soil. For
example, Vesic (1977) states that the fraction of pile settlement due to deformation of
the soil, δs, is a constant (dependent on Poisson’s ratio and pile geometry) times Q/Es,
where Q is the applied load and Es is the (effective) soil elastic modulus.

As the load on the pile is increased, the bond between the soil and the pile surface
will at some point break down and the pile will both slip through the surrounding soil
and plastically fail the soil under the pile tip. At this point, the ultimate bearing capacity
of the pile has been reached. The force required to reach the point at which the pile slips
through a sandy soil is conveniently captured using a soil-pile interface friction angle,
ψ. The frictional resistance per unit area of the pile surface, f , can then be expressed as

f = σn tanψ (1)

where σn is the effective stress exerted by the soil normal to the pile surface. In many
cases, σn = Kσ′

o, where K is the earth pressure coefficient and σ′
o is the effective

vertical stress at the depth under consideration. The total ultimate resistance supplied
by the soil to an applied pile load is the sum of the end bearing capacity (which can
be estimated using the usual bearing capacity equation) and the integral of f over the
embedded surface of the pile. For clays with zero friction angle, Vijayvergiya and Focht
(1972) suggest that the average of f , denoted with an overbar, can be expressed in the
form

f̄ = λ
�
σ̄′

o + 2cu
�

(2)

where σ̄′
o is the average effective vertical stress over the entire embedment length, cu

is the undrained cohesion, and λ is a correction factor dependent on pile embedment
length.

The limit states design of a pile involves checking the design at both the serviceabil-
ity limit state and the ultimate limit state. The serviceability limit state is a limitation on
pile settlement, which in effect involves computing the load beyond which settlements
become intolerable. Pile settlement involves consideration of the elastic behaviour of
the pile and the elastic (e.g. Es) and consolidation behaviour of the surrounding soil.

The ultimate limit state involves computing the ultimate load that the pile can carry
just prior to failure. Failure is assumed to occur when the pile slips through the soil
(we are not considering structural failure of the pile itself) which can be estimated with
the aid of Eq’s 1 or 2, along with the end bearing capacity equation. The ultimate pile
capacity is a function of the soil’s cohesion and friction angle parameters.

In this paper, the soil’s influence on the pile will be represented by bi-linear springs,
as illustrated in Figure 1. The initial sloped portion of the load-displacement curve
corresponds to the elastic (Es) soil behaviour, while the plateau corresponds to the
ultimate shear strength of the pile-soil interface which is a function of the soil’s friction
angle and cohesion. The next section discusses the finite element and random field
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models used to represent the pile and supporting soil in more detail. In the following
section an analysis of the random behaviour of a pile is described and presented. Only
the effects of the spatial variability of the soil are investigated, and not, for instance,
those due to construction and placement variability. Finally, the results are evaluated
and recommendations are made.

δ

ultimate strength

stiffness

1

F

Figure 1. Bi-linear load (F ) vs. displacement (δ) curve for soil springs.

The Random Finite Element Model

The pile itself is divided into a series of elements, as illustrated in Figure 2. Each
element has cross-sectional area, A, (assumed constant) and elastic modulus,Ep, which
can vary randomly along the pile. The stiffness assigned to the ith element is the
geometric average of the product AEp over the element domain.

As indicated in Figure 1, the ith soil spring is characterized by two parameters;
its initial stiffness, Si, and its ultimate strength, Ui. The determination of these two
parameters from the soil’s elastic modulus, friction angle, and cohesion properties is
discussed conceptually as follows;
1) The initial spring stiffness, Si, is a function of the soil’s spatially variable elastic

modulus, Es. Since the strain induced in the surrounding soil due to displacement
of the pile is complex, not least because the strain decreases non-linearly with
distance from the pile, the effective elastic modulus of the soil as seen by the pile
at any point along the pile is currently unknown. The nature of the relationship
between Es and Si remains a topic for further research. In this paper, the spring
stiffness contribution per unit length of the pile, S(z), will be simulated directly as
a lognormally distributed one-dimensional random process.

2) The ultimate strength of each spring is somewhat more easily specified, so long
as the pile-soil interface adhesion, friction angle, and normal stress are known.
Assuming that soil properties vary only with depth, z, the ultimate strength per unit
pile length at depth z, will have the general form (in the event that both adhesion
and friction act simultaneously)

U (z) = p
h
αcu(z) + σn(z) tanψ(z)

i
where αcu(z) is the adhesion at depth z (see Das, 2000, pg. 519, for estimates of
the adhesion factor, α), p is the pile perimeter length, σn(z) is the normal effective
soil stress at depth z, and ψ(z) is the interface friction angle at depth z. The normal
stress is often taken as Kσ′

o, where K is the earth pressure coefficient. Rather than
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simulate cu and tanψ and introduce the empirical and uncertain factors α and K,
both of which could also be spatially variable, the ultimate strength per unit length,
U (z), will also be simulated directly as a lognormally distributed one-dimensional
random process.

spring 3

spring nels−1

spring nels

element 1

element 2

element 3

spring 2

spring 1

spring nels−2

base spring

top of pile

base of pile

element nels−2

element nels−1

element nels

z

Q

ground level

z∆

Figure 2. Finite element representation of the pile-soil system.

The random finite element model (RFEM) thus consists of a sequence of pile elements
joined by nodes, a sequence of spring elements attached to the nodes (see Figure 2),
and three independent 1-D random processes described as follows;
� S(z) and U (z) are the spring stiffness and strength contributions from the soil per

unit length along the pile, and
� Ep(z) is the elastic modulus of the pile.

It is assumed that the elastic modulus of the pile is a 1-D stationary lognormally
distributed random process characterized by the mean pile stiffness, µAEp

, standard
deviation, σAEp

, and correlation length θln Ep
, where A is the pile cross-sectional area.

Note that for simplicity, it is assumed that all three random processes have the same
correlation lengths and all have the same correlation function (Markovian). While it
may make sense for the correlation lengths associated with S(z) and U (z) to be similar,
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there is no reason that the correlation length of Ep(z) should be the same as that in
the soil. Keeping them the same merely simplifies the study, while still allowing the
study to assess whether a “worst case” correlation length exists for the deep foundation
problem.

The elastic modulus assigned to each pile element will be some sort of average of
Ep(z) over the element length and in this paper the geometric average will be used;

Epi
= exp

�
1

∆z

Z zi+∆z

zi

lnEp(z) dz

�
(3)

where zi is the depth to the top of the ith element. The geometric average is dominated
by low stiffness values, which is appropriate for elastic deformation. It is to be noted
that for a pile idealized using an elastic modulus varying only along the pile length, the
true “effective” pile stiffness is the harmonic average

EH =

�
1

∆z

Z zi+∆z

zi

1
Ep(z)

dz

�−1

which is even more strongly dominated by low stiffness values than the geometric
average. However, the following justification can be argued about the use of the
geometric average rather than the harmonic average over each element;
1) if the elements are approximately square (i.e. ∆z ' D), and the pile’s true 3-D

elastic modulus field is approximately isotropic (i.e. not strongly layered) then the
effective elastic modulus of the element will be (at least closely approximated by)
a geometric average. See, e.g., Fenton and Griffiths (2002 and 2005), where this
result was found for a soil block, which is a similar stochastic settlement problem
to the pile element “block”.

2) if the pile is subdivided into a reasonable number of elements along its length (say,
ten or more), then the overall response of the pile tends towards a harmonic average
in any case, since the finite element analysis will yield the exact “harmonic” result.
We are left now with the determination of the spring stiffness and strength values, Si

andUi, from the 1-D random processes, S(z) and U (z). Note that the spring parameters,
Si and Ui, have units of stiffness (kN/m) and strength (kN), respectively, while S(z)
and U (z) are the soil’s contribution to the spring stiffness and strength per unit length
along the pile. That is, S(z) has units of kN/m/m and U (z) has units of kN/m.

To determine the spring parameters, Si and Ui, from the continuously varying S(z)
and U (z) we need to think about the nature of the continuously varying processes and
how they actually contribute to Si and Ui. In the following we will discuss this only
for the stiffness contribution, S, the strength issue is entirely analogous and can be
determined simply by substituting S with U in the following.

We will first subdivide each element into two equal parts, as shown in Figure 3,
each of length ∆h = ∆z/2. The top of each subdivided cell will be at tj = (j � 1)∆h
for j = 1, 2, . . . , 2(nels) + 1, where nels is the number of elements. This subdivision
is done so that the tributary lengths for each spring can be more easily defined: the
stiffness for spring 1 is accumulated from the soil stiffness contribution, S(z), over the
top cell from z = t1 = 0 to z = t2 = ∆h. The stiffness for spring 2 is accumulated from
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the cell above spring 2 as well as from the cell below spring 2, i.e. from z = t2 = ∆h to
z = t3 = 2∆h and from z = t3 = 2∆h to z = t4 = 3∆h, and so on.
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Figure 3. Subdivisions used to compute geometric averages.

If the stiffness contributions, S(z), at each point z are independent (i.e., white noise),
and if the pile stiffness is significantly larger than the soil stiffness, then Si should be
an arithmetic sum of S(z) over the spring’s tributary length,

Si =
Z zi+∆z/2

zi−∆z/2
S(z) dz

In other words, Si should be an arithmetic average of S(z) over the tributary length
multiplied by the tributary length. However, S(z) is not a white noise process – a low
stiffness region close to the pile will depress the stiffness contribution over a length
of pile which will probably be significantly larger than the low strength region itself.
Thus, it makes sense to assume that Si should be at least somewhat dominated by low
stiffness regions in the surrounding soil.

In this paper, a compromise shall be made: Si will be an arithmetic sum of the
two geometric averages over the ith spring’s tributary areas (in the case of the top and
bottom springs, only one tributary area is involved). The result is less strongly low
stiffness dominated than a pure geometric average, as might be expected by this sort of
a problem where the strain imposed on the soil is relatively constant over the element
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lengths (i.e. the constant strain results in at least some arithmetic averaging). The exact
nature of the required average is left for future research.

If the mean of S(z) is allowed to vary linearly with depth, z, then

µS = E [S(z)] = a + bz

If the stiffness per unit length at the top and bottom of the pile are stop and sbot,
respectively, and we measure z downwards from the top of the pile, then

a = stop

b = (sbot � stop)/L

where L is the pile length.
It is assumed that S(z) is lognormally distributed. It thus has parameters

µln S = ln(a + bz) � 1
2σ

2
ln S

σ2
ln S = ln(1 + V 2

S )

where VS is the coefficient of variation of S(z). It will be assumed that VS is constant
with depth, so that σln S is also constant with depth. S(z) can now be expressed in terms
of the underlying mean zero, unit variance, normally distributed 1-D random process,
G(z),

S(z) = exp fµln S + σln SG(z)g

= exp
�

ln(a + bz) � 1
2σ

2
ln S + σln SG(z)

	
In other words

lnS(z) = ln(a + bz) � 1
2σ

2
ln S + σln SG(z).

Now let SGj
be the geometric average of the soil spring stiffness contribution, S(z),

over the j th cell, that is over a length of the pile from tj to tj +∆h, j = 1, 2, . . . , 2(nels),

SGj
= exp

(
1

∆h

Z tj+∆h

tj

lnS(z) dz

)

= exp

(
1

∆h

Z tj+∆h

tj

h
ln(a + bz) � 1

2σ
2
ln S + σln SG(z)

i
dz

)

= exp

(
1

∆h

Z tj+∆h

tj

ln(a + bz) dz � 1
2σ

2
ln S + σln SGj

)

where Gj is the arithmetic average of G(z) from z = tj to z = tj + ∆h;

Gj =
1

∆h

Z tj+∆h

tj

G(z) dz
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Now define

mj =
1

∆h

Z tj+∆h

tj

ln(a + bz) dz � 1
2σ

2
ln S

=
1

b∆h

h
a1 ln(a1)� a2 ln(a2)]� 1� 1

2σ
2
ln S

where

a1 = a + b(tj + ∆h)

a2 = a + btj

If b = 0, i.e. the soil stiffness contribution is constant with depth, thenmj simplifies
to

mj = ln(stop)� 1
2σ

2
ln S

Using mj , the geometric average becomes

SGj
= exp

�
mj + σln SGj

	
Notice that mj is the arithmetic average of µln S over the distance from z = tj to
z = tj + ∆z.

The contribution to the spring stiffness is now ∆hSGj
. In particular, the top spring

has contributing soil stiffness from z = 0 to z = ∆h, so that S1 = ∆hSG1
. Similarly, the

next spring down has contributions from the soil from z = ∆h to z = 2∆h as well from
z = 2∆h to z = 3∆h, so that

S2 = ∆h
h
SG2

+ SG3

i
and so on.

The finite element analysis is displacement controlled. In other words, the load
corresponding to the prescribed maximum tolerable serviceability settlement, δmax, is
determined by imposing a displacement of δmax at the pile top. Because of the non-
linearity of the springs, the finite element analysis involves an iteration to converge on
the set of admissible spring forces which yield the prescribed settlement at the top of
the pile. The relative max-error convergence tolerance is set to a very small value of
0.00001.

The pile capacity corresponding to the ultimate limit state is computed simply as
the sum of the Ui values over all of the springs.

Monte Carlo Estimation of Pile Capacity

To assess the probabilistic behaviour of deep foundations, a series of Monte Carlo
simulations, with 2000 realizations each, were performed and the distribution of the
serviceability and ultimate limit state loads were estimated. The serviceability limit state
was defined as being a settlement of δmax = 25 mm. Because the maximum tolerable
settlement cannot easily be expressed in dimensionless form, the entire analysis will be
performed for a particular case study; namely a pile of length 10 m is divided into 30
elements with µAEp

= 1000 kN, σAEp
= 100 kN, µS = 100 kN/m/m, and µU = 10 kN/m.
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The base of the pile is assumed to rest on a slightly firmer stratum, so the base spring
has mean stiffness 200 kN/m and mean strength 20 kN (note that this is in addition to
the soil contribution arising from the lowermost half-element). Coefficients of variation
of spring stiffness and strength, VS and VU , taken to be equal, ranged from 0.1 to 0.5.
Correlation lengths, θln S, θln Es

, and θln U , all taken to be equal and referred to collectively
simply as θ, ranged from 0.1 m to 100.0 m. The spring stiffness and strength parameters
were assumed to be mutually independent, as well as being independent of the pile
elastic modulus.
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Figure 4. Estimated and fitted lognormal distributions of serviceability limit state
loads, Q for a) V = 0.2 and θ = 1 m (p-value = 0.84) and b) V = 0.5 and θ = 1.0 m
(p-value = 0.00065).

The first task is to determine the nature of the distribution of the serviceability and
ultimate pile loads. Figure 4 shows one of the best (on the left) and worst (on the right)
fits of a lognormal distribution to the serviceability pile load histogram with chi-square
goodness-of-fit p-values of 0.84 and 0.0006, respectively (the null hypothesis being that
the serviceability load follows a lognormal distribution). The right-hand plot would
result in the lognormal hypothesis being rejected for any significance level in excess
of 0.06%. Nevertheless, a visual inspection of the plot suggests that the lognormal
distribution is quite reasonable – in fact it is hard to see why one fit is so much ‘better’
than the other. It is well known, however, that when the number of simulations is
large, goodness-of-fit tests tend to be very sensitive to small discrepancies in the fit,
particularly in the tails.

Figure 5 shows similar results for the ultimate pile capacities. In both figures,
the lognormal distribution appears to be a very reasonable fitted, despite the very low
p-value of Figure 5(b).

If the pile capacities at both the serviceability and ultimate limit states are lognor-
mally distributed, then the computation of the probability that the actual pile capacity,
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Q, is less than the design capacity, Qdes, proceeds as follows,

P [Q < Qdes] = Φ

�
lnQdes � µln Q

σln Q

�

where Φ is the standard normal cumulative distribution function. For this computation
we need only know the mean and standard deviation of lnQ. Figure 6 shows the
estimated mean and variance of lnQ for the serviceability limit state, i.e. those loads,
Q, which produce the maximum tolerable pile settlement which in this case is 25
mm. The estimate of µln Q is denoted mln Q while the estimate of σln Q is denoted sln Q.
Similarly, Figure 7 shows the estimated mean and standard deviation of lnQ at the
ultimate limit state, i.e. at the point where the pile reaches failure by starting to slip
through the soil.
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Figure 5. Estimated and fitted lognormal distributions of ultimate limit state loads,
Q for a) V = 0.2 and θ = 10 m (p-value = 0.94) and b) V = 0.4 and θ = 0.1 m
(p-value = 8� 10−11).

Discussion and Conclusions

Aside from the changes in the magnitudes of the means and standard deviations,
the statistical behaviour of the maximum loads at serviceability and ultimate limit states
are very similar. First of all the mean loads are little affected by both the coefficient of
variation (V ) and the correlation length (θ) – note that the vertical axes for the left plots
in Figures 6 and 7 are over a fairly narrow range. The mean in Q and the mean in lnQ
show similar behaviour. There are only slight reductions in the mean for increasing
V . This suggests that the pile is more strongly controlled by arithmetic averaging of
the soil strengths, which is perhaps not surprising if the pile is much stiffer than the
surrounding soil. In fact, it could be argued that some of the reduction in mean with
V is due to the fact that geometric averaging was done over the half element lengths.
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In other words, it is possible that only arithmetic averaging should be done in this pile
model. This needs further study.
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Figure 6. Estimated mean, mln Q, and standard deviation, sln Q of the maximum
load, Q, at the serviceability limit state.

The load standard deviation (for both Q and lnQ) increases monotonically for increas-
ing coefficient of variation, as expected (i.e. as the soil becomes increasingly variable,
one expects its ability to support the pile would also become increasingly variable).
This behaviour was also noted by Phoon et al. (1990). The standard deviation ap-
proaches zero as the correlation length goes to zero, which is also to be expected due
to local averaging (geometric or otherwise). At the opposite extreme as θ ! 1, the
standard deviation approaches that predicted if the soil is treated as a single lognormally
distributed random variable (with an independent base spring variable). For example,
when θ !1, σln Q is expected to approach 0.4 for the ultimate limit state with V = 0.5.
It is apparent in the right plot of Figure 7 that the uppermost curve is approaching 0.4,
as predicted.

The mean shows somewhat of a maximum at correlation lengths of 1 to 10 m for
V > 0.1. If the design load,Qdes, is less than the limit state load,Q, then this maximum
means that the nominal factor of safety, FS, reaches a maximum for values of θ around
L/2. The reason for this maximum is currently being investigated more carefully.
However, since the mean only changes slightly while the standard deviation increases
significantly with increasing correlation length, the probability of design failure, i.e.
the probability that the actual pile capacity Q is less than the design capacity Qdes, will
show a general increase with correlation length (assuming that lnQdes < µln Q) to a
limiting value when θ ! 1. In other words, from a reliability-based design point of
view, the worst case correlation length is when θ ! 1 and the soil acts as a single
random variable.
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Figure 7. Estimated mean, mln Q, and standard deviation, sln Q of the maximum
load, Q, at the ultimate limit state.

This observation makes sense since variance reduction only occurs if independent
random variables are averaged. That is, if the soil acts as a single random variable,
then the variance remains unreduced and the failure probability is maximized. The
implication of this “worst case” is that reliability-based pile design can conservatively
ignor spatial variation in soil properties so long as end-bearing is not a major component
of the pile capacity (bearing capacity is significantly affected by spatial variability – see,
e.g., Fenton and Griffiths, 2003). For piles that depend mostly on skin friction, then,
the reliability-based design at both serviceability and ultimate limit states can proceed
using single random variables to represent the soil’s elastic behaviour (serviceability)
and shear strength (ultimate).
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