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ABSTRACT Reliability analysis has gained considerable popularity in practice and academe as a way of quantifying and managing ge-
otechnical risk in the face of uncertain input parameters. The user is often required to choose a probability density function for characteriz-

ing random input without a great deal of data to support the decision. Normal and log-normal distributions are both common choices that 

have been applied to geotechnical problems. This paper uses the random finite element method (RFEM) to study the influence of two dif-
ferent input random variable distribution functions on the probability of failure of stability problems involving slopes and block compres-

sion problems. The paper presents the results of parametric studies using these distributions and makes some conclusions on their ad-

vantages and disadvantages. 
 

RÉSUMÉ L'analyse de fiabilité a acquis une popularité considérable, sur le terrain comme dans le monde universitaire, en tant que moyen 

de quantifier et gérer les risques géotechniques en cas de paramètres d'entrée incertains. Il est souvent demandé à l'utilisateur de choisir une 
fonction de densité de probabilité pour caractériser une entrée aléatoire en l‘absence d’un grand nombre de données pour appuyer la déci-

sion. Les distributions normales et log-normale sont deux choix communs qui ont été appliquées à des problèmes géotechniques. Ce docu-

ment utilise la méthode des éléments finis aléatoire (RFEM) pour étudier l'influence de deux fonctions différentes de distribution de va-
riables aléatoires sur la probabilité de défaillance des problèmes de stabilité impliquant des problèmes de pentes et de compression de 

blocs. Le document présente les résultats d‘études paramétriques utilisant ces distributions et rend des conclusions sur leurs avantages et 
leurs inconvénients. 

 
 

1 INTRODUCTION 

In geotechnical engineering there are very few quan-

tities than can be precisely estimated. Hence, proba-

bilistic analysis has been used by engineering and re-

searchers for analyzing different geotechnical 

problems. Starting in the early 90’s, a new method 

called the Random Finite Element Method (RFEM), 

which combines random field theory and the finite 

element method, was developed for use in probabilis-

tic geotechnical engineering (e.g. Griffiths and Fen-

ton 1993). The method was subsequently applied to 

several areas of geotechnical engineering including 

probabilistic slope stability analysis by Griffiths and 

Fenton 2000, 2004. The Local Average Subdivision 

method (LAS) proposed by Fenton and Vanmarcke 

(1990) was used for generating the random fields. It 

was shown that traditional probabilistic analyses, in 

which spatial variability is ignored by implicitly as-

suming perfect correlation, does not necessarily re-

sult in a conservative estimates of the probability of 

failure (e.g. Griffiths et al. 2002).  

In probabilistic analysis, user is often required to 

choose a proper distribution function for input varia-

bles. Normal and lognormal distributions are two of 

most popular choices in geotechnical engineering 

field for shear strength properties of soil. This paper 

investigates the influence of normal and lognormal 

input random variable distribution functions on prob-



ability of failure of slope stabilities and a 2D soil 

block compression problem.  

The shear strength parameters of the soil c′ and 

tanϕ′ are treated as random variables for both prob-

lems and characterized statistically by both normal 

and lognormal distributions separately. c′ is ex-

pressed in dimensionless form as C′ where C′ = c′ /(γ 

H) for the slope problem where H is the height of the 

slope and γ represent the unit weight of the soil. 

In the lognormal distribution, the logarithms of the 

properties are normally distributed (e.g. Fenton and 

Griffiths, 2008). Lognormal distributions guarantee 

that the random variable will never have negative 

values. 

Both distributions are defined by a mean µ and a 

standard deviation σ. The probability density function 

of C′ is given by Equation 1 and 2 for normal and 

lognormal distribution respectively. The same equa-

tions were used for tanϕ′. 
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The mean and standard deviation can conveniently 

be combined in terms of the dimensionless coeffi-

cient of variation V defined as: 
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2 RANDOM FINITE ELEMENT METHOD 

(RFEM)  

The RFEM implementation used in this study com-

bines elastic-plastic finite element analysis with ran-

dom field theory in the block compression and slope 

stability analysis. The methodology has been de-

scribed in details elsewhere (Fenton and Griffiths, 

2008).  

The RFEM is used in conjunction with Monte 

Carlo simulations in which the stability analysis is 

repeated until the probabilities relating to output 

quantities of interest become statistically reproduci-

ble. In the case of slope stability analysis, the proba-

bility of failure is defined by dividing the number of 

realizations in which the slope failed by the total 

number of realizations. For the block problem, which 

is a 2D model of a square soil mass under pressure on 

the top, the average compressive strength for all 

Monte-Carlo realizations is calculated. 

2.1 Spatial correlation 

Generally, the mean and standard deviation of a vari-

able are well understood by engineers. However, the 

spatial correlation length θ of a random property is 

less well understood. This property, called the “scale 

of fluctuation” or “spatial correlation length”, has 

units of length, and represents the distance over 

which the soil or rock property in question is reason-

ably well-correlated to its neighbors. In this study, a 

“Markovian” correlation function is used where the 

spatial correlation is assumed to decay exponentially 

with distance (Vanmarcke 1984). 

 

𝜌 = 𝑒−2|𝜏|/𝜃                                                                      (4) 

 

In Eq (4) which is for an isotropic material, τ is the 

absolute distance between any two points in the ran-

dom field, and ρ is the correlation coefficient be-

tween properties assigned to two points in the ran-

dom field separated by τ. In this study, the spatial 

correlation length has been non-dimensionalized by 

dividing it by the height of the slope H and block B 

for the slope and block problems respectively. The 

non-dimensionalized spatial correlation length is pre-

sented as ϴ in this paper. 

 

3  RFEM RESULTS 

The results of the RFEM analysis for the block com-

pression problem and drained slope are presented in 

this section. 

3.1 Block compression 

As a simple geotechnical probabilistic problem, a 

block compression model has been analyzed using 

the RFEM. The block has an equal width and height 

represented by B and equal to 1. The generation and 

mapping of random field variables including c′ and 

tan ϕ′ properties onto a finite element mesh were per-



formed. Both parameters have the same ϴ. RFEM 

takes full account of local averaging and variance re-

duction over each element, and the exponentially de-

caying spatial correlation function was incorporated. 

An elastic-plastic finite element analysis using the 

Mohr-Coulomb failure criterion was then performed. 

Axial loading was then applied to the mesh until a 

maximum failure stress, qu was reached. Using Mon-

te-Carlo simulations this procedure was repeated 

2000 times. Although each simulation of the Monte-

Carlo process involves the same mean, standard de-

viation and spatial correlation length of soil proper-

ties, the spatial distribution of properties varies from 

one realization to the next which led to a different 

value for qu for each simulation.  Following a suffi-

cient number of realizations, the statistics including 

mean and standard deviation of the output quantity qu 

were computed.  Figure 1 shows a typical failure 

mechanism with the soil’s cohesion distribution in 

the form of a grey scale in which weaker regions are 

lighter, and stronger regions are darker. The soils 

properties c′ and tanϕ′ were assumed to be uncorre-

lated to each other.  

 

 
Figure 1. Typical random field realization and failure mechanism 

for the block compression problem with ϴ=5. 

 

 

A series of analyses were performed in which the 

mean of c′ and tan ϕ′ were kept constant and equal to 

μc’ = 100kPa and μtan ϕ’ = tan 30° = 0.577. The coeffi-

cient of variation, V was 0.3 and 0.5 for both random 

variables while the spatial correlation length ϴ was 

varied. Both normal and lognormal distributions were 

applied on input random variables distributions. The 

mean compressive strength μqu, was calculated by av-

eraging the compressive strength values for all 2000 

Monte-Carlo simulations and normalized with re-

spect to the deterministic value qu (μc’, μtan ϕ’) = 346.5 

based on the mean values of input parameters using 

Eq 4 (Griffiths et al. 2002). 

 

𝑞𝑢 = 2𝑐′ 𝑡𝑎𝑛 (45 +
𝜙′

2
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The result of these analyses has been plotted in 

Figure 2 for 4 different analyses. As it can be seen in 

this picture by increasing V, regardless of the spatial 

correlation length, μqu decreases. There is also a min-

imum μqu value when ϴ = 0.2 for the both normal and 

lognormal cases. This is similar to what Griffiths et 

al. (2002) found for a pillar stability problem. Anoth-

er observation from this graph is that when V = 0.3, 

normal and lognormal distribution results in the same 

values for μqu. However, by increasing the V to 0.5 

there is a difference in μqu values for these two cases. 

This difference reaches to the maximum value when 

ϴ has small or intermediate values; however, by in-

creasing the ϴ the μqu converge to similar values.  

 

 
Figure 2. Variation of normalized μqu with ϴ and V with normal 
and lognormal distributions for input variables. 

 

 

A reason for this difference could be that by in-

creasing coefficient of variation, the standard devia-

tion increases, therefore, some values for the input 

variables with normal distribution became negative. 

For example, for V = 0.3, 0.04% of each input values 

are negative, however when V changes to 0.5, this 

number increases to 2.27%. However, these values 

are small and cannot be the main reason for different 

outputs of normal and lognormal distributions. Figure 

3 indicates the distribution of the c′ values when V is 

equal to 0.1, 0.3 and 0.5. As it has been shown it this 
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figure, by increasing the coefficient of variation, the 

normal and lognormal input functions result in more 

different distributions. This explains the different 

values of μqu for the normal and lognormal cases, es-

pecially when V=0.5 

 
 

 
Figure 3. Normal and lognormal distribution of c’. 

 

3.2 Slope stability analysis 

The slope studied in this paper is shown in Figure 4 

with consideration of a drained slope. The slope in-

clination, height, and foundation ratio is given by β, 

H and D respectively. 

 

 
Figure 4. Slope profile. 
 

 

In this study, H and β are equal to 10 and 26.6° re-

spectively and the μC’ and μtanϕ’ of the soil has been 

chosen to be 0.025 and tan 20° = 0.364. C′ and tan ϕ′ 

have considered non-correlated to each other. The 

slope has been modeled with 4 different coefficients 

of variation equal to 0.3, 0.4 and 0.5. Θ has varied 

from 0.01 to 100 for each slope. Both normal and 

lognormal distributions were taken into account for 

these analyses. Figure 5 illustrates the meshing and a 

typical failure of the drained slope.  

 
Figure 5. Typical random field realization and failure mechanism 
for the slope stability analysis with ϴ=1. 

 

 

Figures 6 to 8 show the probability of failure pf 

versus non-dimensionless spatial correlation length Θ 

for the slope with different coefficient of variation 

for each figure. The spatial correlation lengths in the 

both X and Y directions are equal. Each figure has 

two graphs one corresponding to a slope stability 

analysis when the input random variables C′ and tan 

ϕ′ have normal distribution and another with lognor-

mal distribution. 

 

 
Figure 6. Variation of pf with ϴ for V = 0.3 with normal and 

lognormal distributions for input variables. 
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Figure 7. Variation of pf with ϴ for V = 0.4 with normal and 

lognormal distributions for input variables. 

 
Figure 8. Variation of pf with ϴ for V = 0.5 with normal and 

lognormal distributions for input variables. 
 

 

Figure 6 shows that when the coefficient of varia-

tion is equal to 0.3 input variables with normal and 

lognormal distributions result in almost a same prob-

ability of failure for the slope. By increasing the V to 

0.4 there is a difference in the results of two analyses 

with different input distribution density functions. 

This difference decreases by increasing the spatial 

correlation length. As it discussed for the block prob-

lem, different distribution functions of C′ and tan ϕ′ 

in normal and lognormal distribution cases (Figure 3) 

can result in different results in finite element and 

consequently different probability of failure for the 

slope stability analysis. 

For the slope with V = 0.5 for C′ and tan ϕ′, on the 

other hand, this difference is more considerable. For 

the small values of ϴ this difference is the maximum. 

This incompatibility is more visible when the ϴ is 

0.01 in which the normal distribution results in pf = 0 

while with the lognormal distribution the probability 

of failure is equal to 1. When ϴ is small, the slope 

becomes increasingly uniform with essentially con-

stant strength at each simulation. For the slope with 

the normal distribution function these constant values 

tend to the mean of C′ and tan ϕ′, however, in the 

lognormal distribution the values tend to the median 

of input random variables (Griffiths and Fenton 

2004). The means of C′ and tan ϕ′ result in a Factor 

of Safety (FS) of 1.1 for the slope, therefore the 

probability of failure of the slope is equal to 0 for the 

normal distribution case. On the other hand, FS is 

calculated to be essentially 1.0 with the median val-

ues of the soil strength parameters, hence  pf = 1.  

 

4 CONCLUSIONS 

This paper has studied the probability of failure for a 

block compression problem and drained slope sta-

bilty using the RFEM. The influence of the coeffi-

cient of variation V, spatial correlation length Θ, and 

the choice of input random variable distribution func-

tions (normal or lognormal) on the probability of 

failure pf of the block compression and slope stability 

problem was studied. For both the block and slope 

problems results from both distributions were similar 

when the coefficient of variation was small band in-

creasingly differed as the coefficient of variation in-

creases. This is to be expected from the nature of the 

normal and lognormal distributions. Another reason 

which could have a small impact on the different be-

havior with normal and lognormal distribution func-

tions, is that with a higher coefficient of variations, a 

small percentage of the input variables in the normal 

case will have negative values. The biggest differ-

ences between the results of normal and lognormal 

distributions occurred at low spatial correlation 

lengths, when local averaging resulted in properties 

being “safe” with the normal distribution and “un-

safe” with the lognormal. This paper concludes that 

users should give careful consideration to the choice 

of input probability density functions for geotech-

nical analysis. Distributions should be based on field 

data if available, but if that is not available, a con-

servative approach should always be followed. 
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