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Abstract: Seepage analyses are routinely performed as part of levee analyses. While
finite-element analysis is being used with increasing frequency, semi-analytical
solutions such as “blanket theory” are still commonly used, especially for simplified
reliability analysis in conjunction with first-order methods. Unfortunately, the
simplified approaches do not properly account for the spatial variability inherent in
geologic materials when considering the blanket thickness. In this paper, random
field theory is used to determine the influence of a confining layer of random
thickness on levee under seepage and exit gradients. Results indicate that neglecting
spatial variation in blanket thickness does not cause significant error in computed exit
gradients and flow quantities obtained from simple reliability analysis using blanket
theory.

INTRODUCTION

Nearly $3 trillion of flood related damages were sustained by the United States in
2014 (NWS, 2015) despite the more than 100,000 miles of levees that currently span
counties accounting for 43 percent of the nation’s population (ASCE, 2013). With
increasing urbanization and climate change, the perpetual flood risk associated with
existing levee systems is ever increasing. However, the design practices for levees
have remained relatively unchanged over the last 60 years (Turnbull and Mansur,
1961a and 1961b; USACE, 2000; Wolff, 1994) and focused primarily on minimizing
the potential for heave at the landside levee toe through the analysis of exit gradients.

A simplified levee cross section is illustrated in Figure 1. It is quite common for
levee foundations in fluvial environments to have a pervious aquifer overlain by a
fine grained confining layer as shown. Due to the common nature of this geometry,
simplified semi-analytical solutions (often referred to as “blanket theory”) have been
developed to assess the steady state seepage problem for various boundary conditions
(Bennett, 1945; Turnbull and Mansur, 1961a).
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FIG 1. Schematic of Geologic Cross Section Common to Many Levee Systems.

Despite the increasing use of analysis by the finite element method (FEM) in levee
design, semi-analytical solutions are still commonly used in practice, especially when
simple first order methods of reliability analysis are being used for assessing flood
risk. The primary advantage of using semi-analytical solutions for reliability analysis
is the ease with which uncertainty in problem geometry (e.g., confining layer
thickness) can be considered. To incorporate this uncertainty with FEM analysis
would require multiple FEM models be constructed and interpreted, or the use of
more sophisticated, random FEM (RFEM) models (e.g. Griffiths and Fenton 1993,
Fenton and Griffiths 1993, Fenton and Griffiths, 2008). The disadvantage of semi-
analytical solutions is the implicit assumption of uniform geologic conditions
(constant layer thickness). This paper explores the influence that this assumption has
on reliability calculations by comparing RFEM simulation results incorporating
spatially variable soil profiles to the results of simple reliability analysis using blanket
theory.

BLANKET THEORY REVIEW
Background

Blanket theory was originally developed by Bennet (1945) and further developed
by Turnbull and Mansur (1961a). As noted by Batool et al. (2015), the derivation of
blanket theory stems from the Method of Fragments (Harr, 1962). Therefore,
numerous cases can be defined using different fragments to represent different
boundary conditions. Turnbull and Mansur (1961a) defined seven distinct cases by
considering different combinations of semi-pervious, impervious, or no blanket layer
on the land and river side of the embankment. The case with a semi-pervious blanket
on both the riverside and landside of the levee (case 7c), as shown in Figure 2, is one
of the most common scenarios encountered in practice and will be the only scenario
considered for this investigation. For a thorough review of all cases, the authors
recommend reviewing Batool et al. (2015) and Meehan and Benjasupattananan
(2012).

Problem Description

Blanket theory separates the under seepage problem into three components, i.e., the
flow through the riverside blanket, the flow through the pervious foundation, and the
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flow through the landside blanket. It is assumed that the flow in the foundation is
Riverside Landside

z, Blanket @ Blanket
E dx : — X
: E x=0
i i k, = vertical hydraulic conductivity of blanket

d i D
i :. dh(x) Pervious foundation
R(x): v h(x) +dx—— _ : > o .

: : dx k¢ = horizontal hydraulic conductivity of foundation

FIG. 2. Representation of Levee Geometry for Blanket Theory Derivation
(modified from Batool et al., 2015).

horizontal, while the flow through the blanket is vertical. As noted by Bennet, this
assumption is reasonable provided the ratio of the foundation permeability, ks, to the
blanket permeability, k;, is greater than ten (i.e., kr/k; > 10). The foundation has a
finite depth, d. The length of the riverside blanket, levee base, and landside blanket
are denoted as L;, L, and L3, respectively. The top stratum has a thickness of z; on
both sides of the levee. The total head, referenced to the ground surface, varies from a
value of H on the riverside boundary to a value of zero on the landside boundary. The
total head at any point in the foundation is denoted as A(x).

If the confining layers were impervious, the headloss would vary linearly from the
seepage entrance to the seepage exit. However, the flow through the semi-pervious
confining layers allows the head to reach equilibrium with the ground surface
boundary over distances denoted as the effective seepage entrance length (X;) and the
effective seepage exit length (X3). If the distance to the seepage entrance, L, is larger
than X, then all head loss will occur over the effective seepage entrance length and
X1 will control the problem. Increasing L; beyond distance X; has negligible influence
on the problem. Likewise, increasing L3 beyond distance X; has negligible influence
on the problem. If either L; or L; is smaller than X; or X3, respectively, then the
distance over which the headloss occurs is reduced, thereby increasing foundation
gradients (and discharge quantities) and altering the excess head along the foundation
profile. As such, X; and X3 must be known to compute the exit gradient and flow
quantities using blanket theory. The following section derives relationships for X; and
Xz, h(x) landward of the levee, and the total quantity of flow through the levee
foundation.
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Solution Derivation
Considering any x location in the foundation, the total quantity of flow passing
beneath the blanket layer is given by

_ . dh(x)
CIf—kAl—kfd dx

(Eq. 1)

where A4 is the area (d - 1’ cfs per unit width of levee), i is the hydraulic gradient, and
h(x) denotes the total head with respect to some datum (taken as the ground surface).
The vertical flow through a differential width dx of the landside blanket is

kph(x)-dx
Zp

dg, =kidx = (Eq. 2)

and, from the continuity equation

dar 4 dap _
L+ =2=0 (Eq. 3)

Taking the derivative of Equation 1 with respect to x yields

aqr _ d?h(x)
ax T dx?

(Eq. 4)
Substituting Equations. 2 and 4 into Equation 3 yields

d?n(x) _ kph(x)

dx?  zpksd (Eq. 3)

Recognizing that the blanket layer thickness, foundation layer thickness, blanket
permeability, and foundation permeability are all constants, Equation 5 becomes

d?h(x)
dx?

a’h(x) =0 (Eq. 6)

where a = /ky/(zpkrd). Equation 6 is a second order, linear, ordinary differential
equation with constant coefficients for which the general solution is

h(x) = c;e™ + c,e™** (Eq. 7)

Applying the boundary conditions h = h;y, at x = 0 and h = 0 at x = L3, the
coefficients c; and c, are

€1 = hige — €2 (Eq. 8)
h oe alL3
co = et 9

Substituting Equations 8 and 9 into Equation 7 and recognizing that sinh(x) =

ex_ze_x, h(x) can be defined as
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h(x) = hypo Tt 2D (Eq. 10)
for positive values of x, with x increasing landward from x=0 at the landside levee toe
(Figure 2). To determine the effective seepage exit length, X3, the slope of h(x) at
x=0 is projected landward until h(x) = 0. The slope of h(x) is

dh(x) a cosh (a(L3—x))
dx  t©¢  sinh (aLs)

(Eq. 11)

Evaluating the slope at x = 0, and extrapolating landward until h(x = X3) = 0 yields

dh(0) acosh (als) _  hggea htoe

dx ~ 't9¢ sinh(aL;) ~ tanh(aly) X3 (Eq. 12)
Solving for X5 yields
X; = tanh (aL3) (Eq. 13)

a

The derivation for X; is nearly identical to that of X3, yielding an equation identical
to Equation 13 (see Meehan and Benjasupattananan 2012 for full details). For this
paper, L;= L3, such that X; = X;. Given the values of X; and X; calculated from
Equation 13, the excess head at the levee toe can be computed through similar
triangles as

H X3
X1+Lp+X3

Rtoe = (Eq. 14)

Using Equations 10, 13 and 14, the head can be computed for positive values of x.
For complete details on calculating the excess head for all values of x, refer to
Meehan and Benjasupattananan (2012). The total flow per unit width through the
foundation (qf) can be computed as

_ dkfH
qf - X1+L2+X3 (Eq' 15)
Equation 14 can then be used to compute the factor of safety with respect to initiation
of piping (heave).

FS = e O/rw (Eq. 16)

le - (htoe/Zb)

If the blanket thickness z, is treated as the only random input variable in this
analysis, the variance in the factor of safety can be computed using the first order
second moment (FOSM) method, as outlined by Wolff (1994) and Duncan (2000),
where
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FS(“Zb "'"Zb)_FS('“Zb"’Zb) :

2

ofs = (Eq. 17)

Where p,, and g,, represent the mean and standard deviation of z;, respectively. The
variance computed with Equation 17 considers only the variance of z;, and not the
spatial variability. The following section uses Monte-Carlo FEM analyses to examine
the influence of spatial variability on the variance of the head at the toe and
corresponding exit gradient for comparison.

RANDOM FINITE ELEMENT METHOD

Random fields have been combined with FEM (RFEM) to assess the influence of
property variation on many types of geotechnical problems (Fenton and Griffiths,
2008). In many of these cases, the random field is used to represent physical soil
properties; but in this particular investigation, only the blanket thickness is treated as
a random variable.

Problem Description

The blanket thicknessz,, is assumed to be log-normally distributed with a mean

value of p,, and a standard deviation of a,,. Except for the addition of this random
variable and the consideration of a continuous blanket beneath the levee, all other
aspects of the problem (geometry and material properties) are identical to the
simplified, blanket theory analysis problem.

In a two-dimensional seepage analyses, the blanket thickness can be represented as
a one-dimensional random field. The blanket thickness at each value of x was
computed using a one-dimensional random field generator based on the local average
subdivision method (Fenton and Vanmarcke, 1990). This method readily allows
correlated sampling to be implemented such that differing frequencies of blanket
variation can be generated as shown in Figure 3 through the definition of a spatial
correlation length, 8. Large values of 8 correspond to correlated sampling over large
distances, such that segments of rather uniform thickness are obtained (Figure. 3b).

Smaller values of 6 cause z, to vary at a higher frequency (Figure 3a), with 6 = 0

corresponding to a “white noise” process. Given the random blanket thickness, the
foundation thickness at each location x was

D(x) =d+ u,, — z,(x) (Eq. 18)

such that the FEM ground surface elevation was fixed to the quantity (d + p, ).

The problem geometry obtained from the random field generator (for each
simulation) was then overlaid onto a FEM mesh with 2 ft square elements. Elements
were classified as blanket material if the element centroid was located above the
random field line and foundation material if the element was below the random field
line. The finite element problem was then solved yielding head quantities and flows.
The FEM solution for the geometry shown in Figure 3b is illustrated in Figure 4.
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To quantify the variance in the computed head and flow quantities, a RFEM
analysis with 900 simulations was conducted. Each simulation led to a different value
of the flow quantity and the exit head from which the mean and standard deviation of
these output quantities could be computed. All possible combinations of the
independent variable values listed in Table 1 were evaluated resulting in 108 different

RFEM analyses being conducted for a total of 97,200 finite element problems being
solved.
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FIG. 3. Sample z, Realizations with L,=L;=634 ft, L,=132 ft, uzb=10 ft, 0,,=5 ft,
d=50 ft, for Spatial Correlation Lengths (0) of (a) 20 ft and (b) 200 ft.
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FIG. 4. FEM Solution for the Geometry Shown in FIG. 3b.
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Table 1. Values of Independent Variables Considered in Analyses.

Variable | Values

Li(f) | 634
L(f) | 132
Ls(f) | 634
H(fH) |20

u,, (f) | 10,20

g, (f) |25

d(ft) | 10,50, 100

kr(ft/s) |4.92 x 107

ky (ft/s) |4.92 x 10*,4.92 x 10°,4.92 x 10™
6(ft) |20, 50,200

FEM Analyses Results

The pressure head beneath the blanket, blanket thickness, and hence the exit
gradient were calculated for each FEM analyses using the mesh node at the interface
of the blanket and foundation materials along a vertical line passing through the
landside levee toe as illustrated in Figure 5. The blanket thickness was the difference
between the elevation of the interface node and the ground surface. The exit gradient
was then calculated using the nodal pressure head and computed blanket thickness.
Because 900 realizations were run for each of the RFEM analyses, 900 values of the
exit gradient were computed from each analysis. The resulting distributions of
computed quantities for the analysis shown in Figure 5 are provided in Figure 6.

200 1 |

150 1 4

100
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50

.
300 400 500 600 700 800 9200 1000 1100
Distance (ft)

FIG. 5. FEM Realization with L;=L;=634 ft, L,=132 ft, uzb=10 ft, 0,,=5 ft,
d=100 ft, and 0=50 ft.
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FIG. 6. Distributions of Exit Gradient, Blanket Thickness, Excess Head, and
Total Flow Through Section from RFEM Analysis Shown in FIG. 5.

Values of interest from the FEM analyses include the mean and standard deviation of

the following quantities:

Khiper Ohyp, ~ Mean and standard deviation of excess head at the bottom of the

blanket directly beneath the levee toe

Ui, i, mean and standard deviation of exit gradient

Ko Oor mean and standard deviation of total flow through the section

Ko, 90, mean and standard deviation of total flow exiting the landside blanket
The above quantities were calculated for all 108 combinations of independent

variables. To quantify the influence of 6 on the simulation results, the linear

correlation coefficient was computed between 0 and the mean and standard deviation

of the above quantities yielding the results presented in Table 2. The results indicate

that, for the cases analyzed, 6 only has an influence on the standard deviation of the

total flow and the flow exiting through the blanket. To further evaluate the influence

of 6 on the flow quantities, the distributions of computed flows from two analyses in

which only 6 differed were compared (Figure 7). As shown, increasing 0 leads to

increasing variance in computed total flow all else equal.
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Table 2. Linear Correlation Coefficients Between 0 and the Monte Carlo FEM
Result Statistics.

”htoe ahtoe uie Gie ”QT aQT qu aQb
0 0.05 | 0.04 | 0.06 | 0.06 | 0.00 | 0.25 | 0.00 | 0.21
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FIG. 7. Distribution of Total Flow Through Section for 6=20 ft and 6=200 ft
with d=100 ft, u, =10 ft, 0,, =2 ft, and kp= 4.92x10 ft/s.

DISCUSSION

To determine the error associated with neglecting spatial variability in the
simplified FOSM reliability analysis using blanket theory, the mean and standard
deviation of the exit gradient were calculated using Equations 8 through 12 for all
108 cases assessed. The computed exit gradients were selected for further comparison
as the exit gradient has typically been the performance criteria for reliability analyses.
The values computed using blanket theory were compared to the mean and standard
deviations computed from the FEM analyses (Figure 8). The largest deviation
between FEM and blanket theory results is seen for analyses in which d=10 ft and
0,,=5 ft. The reason for the significant deviation is due to the blanket thickness
exceeding the aquifer depth at locations (Figure 9) creating a seepage cut-off. This
condition invalidates all of the assumptions of blanket theory, thus explaining the
error in the blanket theory results. With the exception of the cases with d=10 ft and
a,,=5 ft, all other FEM results yield nearly the same values as blanket theory using
FOSM reliability analysis. The following paragraphs compare the cumulative
distribution functions for the cases resulting in the maximum deviation (without cut-
offs) in order to visually observe the significance of the differences obtained.
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FIG. 8. Comparison of (a) Standard Deviation of Exit Gradient and (b) Mean
Value of Exit Gradient Obtained from Blanket Theory (BT) and RFEM (FEM).
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FIG. 9. Example Realization for Cases with d=10 ft and o, =5 ft.

The blanket is the full thickness of the aquifer in places creating seepage cut-
offs.

The analyses that yielded the largest difference in 0;, between blanket theory and
the FEM analysis was the case with d=50 ft, p, =10 ft, 0,,=5 ft, 6=20 ft, and
ky=4.92x 10 ft/s (Case A). The analyses that yielded the largest difference in Ui,
between blanket theory and the FEM analysis was the case with d=50 ft, u,, =10 ft,
g,,=5 ft, 6=200 ft, and k,=4.92x 10® ft/s (Case B). For both FEM analyses, the
distribution of factor of safety is calculated as

FS; = icfie; .j=1.2,...n (Eq. 19)

where n = 900. The value of i, was taken as 0.92, which corresponds to a soil with a
saturated unit weight of 120 pcf.

The blanket theory mean and standard deviation of the factor of safety was
computed using Equations 13, 14, 16 and 17 as follows. As an example, the mean
factor of safety for Case A was computed as
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a = [k /(g krd) = /(492 x 10-/(10 (4.92 x 10-3)50) = 0.0014 ft"

tanh (aL3) __ tanh (0.0014(634)) _

X3 - Xl - - 505 ft
a 0.0014
_ HX; _ 20%505
Hheoe = X T1,4%; 50541324505 8.84 ft
j j 0.92
Hrs = = = < = =1.04

Hie  (Hhgoe/Hzy) — 8.84/10

Performing the same calculations two more times with z;, increased and decreased
by one standard deviation leads to factors of safety of 1.55 and 0.53. Substituting
these values into Equation 13, the variance of the factor of safety can be calculated as

o2, = [1.55;0.53]2: 0.26

Assuming the blanket theory factor of safety is normally distributed, the resulting
cumulative distribution function for the mean and standard deviation computed above
is compared to the empirical cumulative distribution function for all 900 FEM results
in Figure 10a. The same procedure was followed for Case B, with the results shown
in Figure 10b. From these examples, it is readily observed that FOSM blanket theory
computations adequately describe the variability in exit gradients even when the
confining layer thickness varies spatially.

1 T T—— 1 T —
FEM CDF ™~
0.8} 0.8} FEM CDF
%‘ 0.6 & 0.6 ;
y g ,
& B
04} Blanket Theory CDF A~ 0.4
0.2} 0.2+
Blanket Theory CDF
0 - - - 0 : - : :
a. 1 2 3 b. 1 2 3 4 5

Factor of Safety

Factor of Safety

FIG. 10. Comparison of the Cumulative Distribution Functions of Uplift Factor
of Safety at the Levee Toe Computed from the FEM Analyses and Blanket
Theory for Cases of Maximum Deviation as Shown in FIG. 8.

100



Rocky Mountain Geo-Conference 2016 GPP 10

© ASCE

CONCLUSIONS

RFEM analyses were conducted to evaluate the influence of spatial variation in
confining layer (blanket) thickness on levee under seepage calculations. The spatial
variation in blanket thickness was simulated using a one dimensional random field
generator with spatially correlated sampling. The results of the random finite element
analysis were compared to the results of FOSM reliability analysis using blanket
theory as the performance function. Results indicate that the FOSM results
adequately approximate the cumulative distribution of exit gradients and uplift factors
of safety provided two distinct layers exist across the entire length of the model.

Permission to publish was granted by Director, Geotechnical and Structures
Laboratory.
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SYMBOLS

A =area of flow per unit width (ft*/ft)

d =thickness of pervious layer beneath blanket (ft)

h =excess head above the ground surface (ft)

hiwe=excess head at the landside levee toe (ft)

H =head loss across the model (ft)

I =hydraulic gradient (-)

I = critical vertical hydraulic gradient (-)

kp =vertical hydraulic conductivity in confining layer (ft/sec)
kr=horizontal hydraulic conductivity in foundation (ft/sec)
L7 =length from riverside boundary to riverside levee toe (ft)
L>=width of levee base (ft)

Lz =1length from landside levee toe to landside boundary (ft)
g» = flow through the blanket (ft*/sec-ft)

gr=flow through the foundation (ft’/sec-ft)

gr =total flow through the section (ft'/sec-ft)

zp =blanket thickness (ft)

y' = buoyant unit weight of soil (pcf)

Yw = unit weight of water (pcf)

Ux= mean value of random variable X

0 = spatial correlation length (ft)

oy = standard deviation of random variable X
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