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Abstract 
 
Natural soils always exhibit spatial variability with the properties varying from point to point. 
The majority of probabilistic slope stability analyses model strength parameters as stationary 
random fields, i.e. the mean and standard deviation of strength are constant everywhere. Due to 
the influence of the effective overburden pressure however, normally consolidated soils regularly 
display an increasing undrained strength trend with depth. Using recently published deterministic 
solutions as a benchmark, this paper uses random finite element method (RFEM) to investigate 
the influence of spatial variability on the undrained stability of non-stationary random slopes, 
where the mean strength increases linearly with depth while the coefficient of variation remains 
constant. Results are presented in the form of charts that give the mean and standard deviation of 
the dimensionless stability number. By reading the charts presented in this paper, engineers can 
obtain a preliminarily assessment of the probability of slope failure for normally consolidated 
clay slopes. 
 
 
INTRODUCTION 
 
In the world of probabilistic geotechnical analysis, slope stability analysis seems to have 
received more attention in the literature than any other geotechnical application. Important early 
contributions appeared in the 1970s (e.g., Matsuo and Kuroda 1974; Alonso1976; Tang et al. 
1976; Vanmarcke 1977). Recognition that geotechnical engineering is highly amenable to 
probabilistic treatment goes back much further. In his foreword to the inaugural issue of 
Géotechnique in 1948, Karl Terzaghi talked about the properties of the soil material varying 

Geo-Risk 2017 GSP 283 471

© ASCE



   

“…from point to point.” Various probabilistic tools have subsequently been developed for 
tackling probabilistic geotechnical analysis, such as event trees, first order second moment 
(FOSM) method and first order reliability method (FORM) (e.g., Whitman 1984; Wolff 1996; 
Lacasse 1994; Christian et al. 1994; Hassan and Wolff 1999; Duncan 2000). 

It is only recently however, that Terzaghi’s observation of spatially varying soil 
properties has been tackled explicitly by an advanced numerical method called the Random 
Finite Element Method (RFEM), with initial application to seepage problems (Griffiths and 
Fenton 1993; Fenton and Griffiths 1993), and later to slope stability analysis (e.g., Griffiths and 
Fenton 2000, 2004; Griffiths et al. 2009). In these studies, slope stability was investigated 
systematically using the finite element method combined with random field theory in a Monte-
Carlo framework. The random fields were generated by the Local Averaging Subdivision (LAS) 
method (Fenton and Vanmarcke 1990) which can account for spatial variability and local 
averaging over each finite element. All the RFEM analyses mentioned previously considered 
slopes with stationary random properties, i.e. the mean and standard deviation of strength are 
constant everywhere. Due to the influence of the effective overburden pressure however, 
normally consolidated clays regularly display an increasing undrained strength trend with depth. 
Hicks and Samy (2002) considered some non-stationary random slopes using RFEM for the 
special case of zero strength at the ground surface (e.g., Gibson and Morgenstern 1962), while 
this paper will present some results for slopes in which the mean strength increases linearly with 
depth from a non-zero value at the ground surface (e.g., Hunter and Schuster 1968). 

The geometry and parameters for this problem are shown in Fig. 1, where the slope angle 
is β , the slope height is H  and the foundation depth ratio is D . The mean undrained strength is 

a linear function of depth given by  

0uz uc c zμ μ ρ= +      (1) 

where 
uzcμ  is the mean strength at depth z ; 

0ucμ  is the mean strength at the ground surface and 

ρ  is the strength gradient. In this paper a constant coefficient of variation 
ucv  

is assumed. For 

the random field modeling, a dimensionless and isotropic spatial correlation length / HθΘ =  is 

 
Figure 1. Undrained slope with linearly increasing mean strength. 
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used for parametric studies. The spatial correlation length may exhibit anisotropy, especially in 
the horizontal direction. For simplicity, the assumption of isotropy is made throughout this paper 
and the option relating to anisotropy may be a topic for future studies. Other deterministic 
parameters are the undrained friction angle 0uφ =  and the saturated unit weight γ . 

 
NON-STATIONARY RANDOM FIELD GENERATION 
 
With reference to Fig. 1, in order to generate a random field with the properties given by Eq. (1) 
Step 1 

Initially generate a homogeneous stationary lognormal random field across the mesh 
based on the parameters at 0z = , i.e. mean 

0ucμ , coefficient of variation 
ucv  and dimensionless 

spatial correlation length / HθΘ = . Let the initial values assigned to all elements at this stage be 

0ic , 1,  2, ,  i n=   where n  is the number of elements in the mesh. 

Step 2 
The element values are then adjusted to account for other depths using the scaling factor 

0

0

0 ,  1,  2, ,  u

u

c
zi i

c

z
c c i n

μ ρ
μ

+
= =      (2) 

where z  is sampled at the centroid of each element.  
Figure 2 shows a typical realization of a random field with the properties indicated in the 

figure caption. Dark and light regions depict high and low values of soil strength, respectively. It 
can be seen from Fig. 2 that high values of strength are more likely to occur at greater depths 
(higher values of z ). 

 
Figure 2. A typical realization of a random field for a slope with 20β = ° , 1.0M = , 2.0D = , 

0.1
ucv =  and 1.0Θ = . 

 

RESULTS 
 
In the framework of deterministic analysis of the problem shown in Fig. 1, Hunter and Schuster 
(1968) presented charts to facilitate calculation of the factor of safety, which have been recently 
refined by Griffiths and Yu (2015). The fundamental solution is a stability number N expressed 
as 
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( ), ,N f D Mβ=      (3) 

where M  is a dimensionless strength gradient parameter defined as 

0 0uc HM
H H

μ
ρ

= =      (4) 

Koppula (1984) collected published field test result for ρ , with typical values in the 

range 30 3.5 kN/mρ< < . This led to a dimensionless parameter R 1 /c M=  in the range 

R0.1 5c< < , which cover the selected M  in the current study. 

The factor of safety FS  is equal to the ratio of the restoring moment to the overturing 
moment. By using an optimisation approach, the minimum factor of safety can be obtained. Then 
the factor of safety FS  can be expressed by 

FS N ρ
γ

=       (5) 

from which the stability number can be computed as 

N FS γ
ρ

=       (6) 

In the context of a Monte-Carlo analysis, each realization of an RFEM analysis of the 
problem shown in Fig. 1 involves generation of a non-stationary random field as described in the 
previous section, followed by a conventional deterministic slope stability analysis using strength 
reduction to calculate the factor of safety FS . Finally the stability number N  is derived from Eq. 
(6). The process is then repeated; a new non-stationary random field is generated leading to a 
different stability number N  and so on. Following each suite of 1000 Monte-Carlo simulations, 
the mean and standard deviation of stability number ( Nμ  and Nσ ) can be obtained. Use of a 

stability number is a convenient and more fundamental way of normalizing the slope dimensions 
and the soil unit weight to render the problem dimensionless. For consistency, this paper uses the 
same stability number used by Hunter and Schuster (1968) and Griffiths and Yu (2015). The 
authors have performed a comprehensive parametric study of this problem, but for the purposes 
of this paper, a subset of results are shown in Fig. 3, for the case of 0.5M = , 15β = °  with 

dimensionless spatial correlation lengths 0.5 and 2.0Θ = . 
The abscissa is the depth ratio D , the ordinate to the left is Nμ  and the ordinate to the 

right is Nσ . Consider for example, the case of a slope with 0.5M = , 15β = °  and 0.5Θ = , as 

shown in Fig. 3(a). As might be expected, for slopes with low values of the input coefficient of 
variation, the mean stability numbers agree well with those from a deterministic analysis. As the 
input coefficient of variation increases however, the mean stability number decreases, implying a 
decreasing value of the mean factor of safety. On the other hand, the standard deviation of the 
stability number increases as the input coefficient of variation is increased. 
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Figure 3. Mean and standard deviation of stability number ( Nμ  and Nσ ) against depth 

ratio ( D ) for 0.5M =  and 15β = ° . 

Geo-Risk 2017 GSP 283 475

© ASCE



   

An interesting observation from Fig. 3(a) is that the mean stability number for higher 

values of 
ucv  continues to fall with increasing foundation depth ratio (in the range 1.5 2.0D< < ) 

where the deterministic results would remain constant. This phenomenon further emphasises the 
“seeking out” effect of the critical failure mechanism in a finite element approach to slope 
stability analysis, where the analysis allows the soil mass to “fail where it wants to fail”. Figure 4 
shows a failure mechanism from a suite of Monte-Carlo simulations for the same case with 

0.5
ucv =

 
and 2.0D = . In the deterministic case with 0.5M =  and 15β = ° , the mechanism can 

never go deeper than 1.5D =  (see Fig. 5(b) in Griffiths and Yu 2015), however in the 
probabilistic simulations, the failure mechanism can and does go deeper in some simulations as 
shown in Fig. 4. This can happen probabilistically, because some random field simulations 
generate sufficiently low strengths in this deeper range to attract the critical mechanism. 

 
Figure 4. Failure mechanism for the case slope with 0.5

ucv =
 
and 2.0D = . 

 
Example  problem 
 
Since each non-stationary random field simulation computes a different stability number N , the 
sample probability density function (pdf) of N  values can be plotted for analysis. Figure 5 
shows a histogram of N  values for an example slope problem with geometry and properties 
shown in Table 1, together with a lognormal fit. As shown in Fig. 5, the fitted curve agrees well 
with random field results. The histogram is obviously positive-skewed, and a goodness of fit test 
indicates that a p -value is about 0.45. 

 
Table 1. Geometry and properties for the example problem 

β  H  D  0ucμ  
ucv  Θ  ρ  γ  M  

15° 10 m 1 
15 
kPa 

0.5 2.0 
3 

kN/m3
20 

kN/m3 
0.5 
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Figure 5. Histogram and lognormal fit for the example problem. 

 
Use of Fig. 3 is now demonstrated to estimate the probability of failure. Figure 3(b) with 

0.5
ucv =  

(a suggested upper bound for the coefficient of variation of undrained strength, e.g., 

Lee et al. 1983; Phoon and Kulhawy 1999) and 1D = , gives 12.81Nμ ≈  and 3.91Nσ ≈ . 

Assuming that N  is lognormal, as suggested above, the standard deviation and mean of the 
underlying normal distribution of ln N  are given by 

( ) ( )2 2
ln ln 1 ln 1 0.31 0.303N Nvσ = + = + =     (7) 

( )2 2
ln ln

1 1
ln ln 12.81 0.303 2.504

2 2N N Nμ μ σ= − = − =   (8) 

Finally the probability of failure ( fp ) is given by 

[ ] [ ]

( ) ( )ln

ln

3
1 1 1 6.67

20

ln 6.67 ln 6.67 2.504
    2.00 1 2.00 0.023

0.303

   

f

N

N

p p FS p N p N p Nρ
γ

μ
σ

   = < = < = < = <     
 − − = Φ = Φ = Φ − = − Φ =   

  
(9) 

where ( ).Φ  is the standard normal cumulative distribution function. 

 
CONCLUSION 
 
The paper has described RFEM analyses of undrained slopes with non-zero mean strength at the 
ground surface and linearly increasing mean strength with depth. A constant coefficient of 
variation was assumed in the current work. An algorithm to generate the non-stationary random 
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field for this normally consolidated clay slopes was proposed. Although the values of Nμ  for 

slopes with low values of the coefficient of variation were in good agreement with the recently 
published deterministic results of Griffiths and Yu (2015), for higher values of the coefficient of 
variation, Nμ  fell below the deterministic lower bound as the foundation depth ratio D  was 

increased. Results presented in this paper are a subset of a comprehensive probabilistic study on 
normally consolidated clay slopes with linearly increasing mean strength with depth, which will 
be reported elsewhere. 
 
REFERENCES 
 
Alonso, E. E. (1976). "Risk analysis of slopes and its application to slopes in Canadian sensitive 

clays." Géotechnique, 26(3), 453-472. 
Christian, J. T., Ladd, C.C. and Baecher, G. B. (1994). "Reliability applied to slope stability 

analysis." J. Geotech. Engng, ASCE,120(12), 2180-2207. 
Duncan, J. M. (2000). "Factors of safety and reliability in geotechnical engineering." J. Geotech. 

Geoenviron. Engng, ASCE,126(4), 307-316. 
Fenton, G. A. and Vanmarcke, E. H. (1990). "Simulation of random fields via local average 

subdivision." J. Eng. Mech, ASCE,116(8), 1733-1749. 
Fenton, G. A. and Griffiths, D. V. (1993). "Statistics of block conductivity through a simple 

bounded stochastic medium." Water Resour. Res., 29(6), 1825-1830. 
Gibson, R. E. and Morgenstern, N. (1962). "A note on the stability of cuttings in normally 

consolidated clay." Géotechnique,12(3), 212-216. 
Griffiths, D. V. and Fenton, G. A. (1993). "Seepage beneath water retaining structures founded 

on spatially random soil." Géotechnique, 43(4), 577-587. 
Griffiths, D. V. and Fenton, G. A. (2000). "Influence of soil strength spatial variability on the 

stability of an undrained clay slope by finite elements." Slope Stability 2000 (eds 
Griffiths, D. V. et al.), ASCE, GSP, 101, 184-193. 

Griffiths, D. V. and Fenton, G. A. (2004). "Probabilistic slope stability analysis by finite 
elements." J. Geotech. Geoenviron. Engng, ASCE,130(5), 507-518. 

Griffiths, D. V., Huang, J. and Fenton, G. A. (2009). "Influence of spatial variability on slope 
reliability using 2-D random fields." J. Geotech. Geoenviron. Engng, ASCE,135(10), 
1367-1398. 

Griffiths, D. V. and Yu, X. (2015). "Another look at the stability of slopes with linearly 
increasing undrained strength." Géotechnique, 65(10), 824-830. 

Hassan, A. M. and Wolff, T. F. (1999). "Search algorithm for minimum reliability index of earth 
slopes." J. Geotech. Geoenviron. Engng, ASCE,125(4), 301-308. 

Hicks, M. A. and Samy, K. (2002). "Influence of heterogeneity on undrained clay slope 
stability." Q. J. Engng and Hydrogeology, 35(1), 41-49. 

Hunter, J. H. and Schuster, R. L. (1968). "Stability of simple cuttings in normally consolidated 
clay." Géotechnique,18(3), 372-378. 

Geo-Risk 2017 GSP 283 478

© ASCE



   

Koppula, S. D. (1984). "On stability of slopes in clay with linearly increasing strength." Can. 
Geotech. J., 21(3), 577-581. 

Lacasse, S. (1994). "Reliability and probabilistic methods." 13th International Conference on Soil 
Mechanics and Foundation Engineering, 1994. New Delhi, India, 225-227. 

Lee, I. K., White, W. and Ingles, O. G. (1983). Geotechnical Engineering. London: Pitman. 
Matsuo, M. and Kuroda, K. (1974). "Probabilistic approach to the design of embankments." Soils 

Found,14(1), 1-17. 
Phoon, K. K. and Kulhawy, F. H. (1999). "Characterization of geotechnical variability." Can. 

Geotech. J., 36(4), 612-624. 
Tang, W. H., Yucemen, M. S. and Ang, A. H. S. (1976). "Probability-based short term design of 

slopes." Can. Geotech. J.,13(3), 201-215. 
Terzaghi, K. (1948). "Foreword to the inaugural volume of Géotechnique". 1(1). 
Vanmarcke, E. H. (1977). "Reliability of earth slopes." J. Geotech. Engng. Div.,103(11), 1247-

1265. 
Whitman, R. V. (1984). "Evaluating calculated risk in geotechnical engineering." J. Geotech. 

Engng, ASCE,110(2), 143-188. 
Wolff, T. F. (1996). "Probabilistic slope stability in theory and practice." Uncertainty in the 

geologic environment: From theory to practice (eds Shackelford, C. D. et al.), ASCE, 
GSP, 58, 419-433. 

 

Geo-Risk 2017 GSP 283 479

© ASCE


