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Abstract 
 
Slope stability analysis is a branch of geotechnical engineering that is highly amenable 
to probabilistic treatment. The engineering properties of soils vary spatially, however 
geotechnical tests can only investigate a small proportion of the site.  When random 
field theory is used to model the spatial variability of soils, the associated statistics are 
inferred from geotechnical tests, however the random fields do not necessarily account 
for the specific deterministic properties, albeit limited, as measured from the site 
investigation data. In this paper, conditional random fields are used to model the spatial 
variability of soils taking account of the actual site-specific data obtained. Numerical 
results presented in this paper show that inclusion of this data can be an important factor 
in the determination of slope reliability. 
 

INTRODUCTION 
 
In the 1970s probabilistic slope stability analysis was first introduced into slope 
engineering by Alonso (1976). In the last two decades, probabilistic methods are 
becoming more popular for quantifying uncertainty and incorporating them rationally in 
designs.  

The traditional probabilistic methods such as First Order Second Moment (FOSM) and 
First Order Reliability Method (FORM) ignore spatial variability by implicitly 
assuming perfect correlation. A more rigorous method called Random Finite Element 
Method (RFEM) has been developed by Griffiths and Fenton (1993), in which random 
fields are used to model spatial variability within the Monte Carlo framework. The 
RFEM has been applied extensively for geotechnical engineering as seen in Griffiths 
and Fenton (2004), Griffiths et al. (2009) and Huang et al. (2010). It is noted that the 
statistics (e.g., mean, variance and spatial correlation length) are inferred from 
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geotechnical tests, however the random fields do not necessarily account for the specific 
deterministic properties, albeit limited, as measured from the site investigation data. In 
this paper, conditional random fields are used to model the spatial variability of soils 
taking into account of site-specific data obtained.   
 
The conditioning of random fields is a process that simulates unmeasured spatial 
locations conditioned on the known values at measured locations. Both the 
measurements and their statistics are incorporated in conditional random fields. There 
are general methods that can be used to transform unconditional simulations into 
conditional ones. The conditional probability density function method was first 
suggested to carry out the conditional simulation by Kameda and Morikawa (1992) in 
relation to their work in earthquake engineering. Using Kriging technique for 
conditional simulation is first proposed by Journel (1974). The Kriging method has 
been widely used. Frimpong and Achireko (1998) applied Kriging to simulate ore 
reserves. Elishakoff et al. (1994) developed conditional simulation in earthquake 
monitoring engineering. Chiles and Delfiner (2009) applied conditional simulation in 
reservoir engineering. Van den Eijnden (2010) used Kriging extensively in geo-
statistics. However, there are limited studies using conditional simulation in 
geotechnical engineering. 
 
An undrained slope example is provided to demonstrate the proposed approach. 
Numerical results show that including site specific data can be an important factor in the 
estimation of slope reliability. By incorporating more site investigation data, the 
uncertainties in the estimation can be significantly reduced. 
 
Interpolation by Simple Kriging 

Kriging is an interpolation method first formalized by Matheron (1962) into a statistical 
approach, inspired by the work by Krige (1951) on the evaluation of mineral resources. 
Simple Kriging (SK) is basically best linear unbiased estimation with the assumption 
that the mean and standard deviation are constant and known across the entire region of 
interest. Kriging estimates X( )X  at any unknown location using a weighted linear 

combination of the values of X  at each observation point. Suppose that 1X ， 2X ，…，

Xn  are observations of the random field X( )X  at known spatial locations 1X ， 2X ，…，

nX ，that is，X X( )k =
k

X . Then the Kriging estimated of  X( )X  at X  can be expressed 

as  

( )
1

X X
n

k k
k

β
∧

=

=X                                                                                                      (1) 

where n is the number of observations and kβ  are unknown weights determined by the 

covariance (or correlation) between observations and unknown points.  
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In Kriging, it is assumed that the mean ( )Xμ X  in a regression analysis is given by, 

( ) ( )
1

m

X i i
i

a gμ
=

=X X                    (2)                                        

where ia  denotes unknown coefficients and ( )ig X  denotes a specified function of how 

the mean varies with position. SK assumes stationary data which has constant known 
mean value Xμ  and  

( )X Xμ μ=X                   (3) 

For the Kriging estimate to be unbiased, the mean difference between the estimate and 
the true (but random) value should be zero, 

( ) ( ) ( ) ( )
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Since this must be true for any mean values Xμ , the unbiased condition reduces to 

1

1
n

k
k

β
=

=                   (5)                                        

The unknown Kriging weights β  are obtained by minimizing the estimation variance, 

( ) ( )
2

2 =E X XEσ
∧  −  

  
X X                (6)  

The Lagrange method (Wackernagel, 2013) is used to reduce the solution to the matrix 
equation                                                                                                         

=Kβ M                  (7)                                         

where K  and M depend on the covariance structure, 
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              (8)                                         

in which ijC  is the covariance between iX  and jX , η  is a Lagrangian parameter used 

to solve the variance minimization problem subjected to the unbiased condition. The 
covariance ixC  appearing in the vector on the right-hand side, M , is the covariance 

between the ith observation point and the point at X  where the best estimate is to be 
calculated. Note that the Kriging matrix K only depends on the location of observations 
and their covariance. Thus Kriging matrix can be used to obtain kriging weights by 
inverting K  only once and then Eqs.(7) and (1) can be used repeatedly for different 
spatial locations. 

Conditional Random Fields 

 
The Local Average Subdivision (LAS) method proposed by Fenton and Vanmarcke 
(1990) is used to generate unconditional random fields in this paper. Kriging technique 
is used for generate conditional simulation. Consider the decomposition of the process 
into the simple kriging predictor and the residual: 

^ ^

X( ) X( ) X( ) X( ) = + − 
 

X X X X                                                                                 (9) 

Replace the second component in Eq.(9) with 
^

(X ( ) X ( ))usus −X X , which is based on an 

unconditional simulation of a process with mean Xμ and covariance ijC . That is, define 

the conditional simulation X ( )cs X  by Journel (1974): 

^ ^

X ( ) X( ) X ( ) X ( )uscs us
 = + − 
 

X X X X              (10)   

where X ( )cs X  is the conditionally simulated random field, X ( )us X  is the unconditional 

random field, 
^

X ( )us X  is the interpolated field by Simple Kriging based on 

unconditionally simulated values at the same measurement locations. 

Because engineering properties are generally non-negative, lognormal distribution are 

usually adopted. However Eq.(10) cannot be used directly for lognormal random fields. 

Elishakoff et al. (1994) and Chilès and Delfiner (2012) proposed a conditional 

simulation method for  non-Gaussian fields by transforming actual data to Gaussian 

data as shown in Figure 1. 
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Figure 1 Flowchart of conditional simulation 
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An undrained slope is considered with the finite element mesh shown in Figure 2 . The 
slope is inclined to the horizontal at angle 26.6α =  (2:1slope), with height 10H m= , 
and depth ratio to a lower firm layer 2D = , and soil unit weight ( ) 3 20.0kN/msat orγ γ = , 

which are all held constant. The undrained shear strength is assumed to be lognormally 
distributed with the mean 50kPa

uCμ = and the standard deviation 25kPa
uCσ = . Using 

strength reduction method with an iteration ceiling of 1000, the FS of the slope was 
found to be 1.47 based on the mean. Two thousand unconditional RFEM simulations 
have been conducted. It can also be noted that the spatial correlation length is fix at 10m 
and assumed isotropic in this paper. The probability of failure ( fp ) is found to be 0.17. 

Two typical failures are shown in Figure 4 (a) and (b). When the spatial correlation 
length is relatively high, 1000m, the fp  is found to be 0.28. 

 

Figure 2  Finite element mesh 

The above calculations do not take site investigation data directly into account. Suppose 
three CPTs have been conducted at the locations shown in Figure 3. The measurements 
of undrain shear strength by the CPTs are extracted from an unconditional simulation 
with the same statistics and the spatial correlation length fixed at 10m.  

 
Figure 3. Undrained shear strength measured by CPT 

Using the measurements of the CPTs, two thousand simulations are carried out.  When 
CPT1 is incorporated in the conditional simulations, it can be seen from Figure 4 (c) 
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and (d) that the measurements at the CPT1 remain constant from simulation to 
simulation. However, as shown in Figure 4 (a) and (b), the shear strengths at the same 
place change from simulation to simulation in unconditional simulations. The CPU time 
depends on fp and runs to about 2 hours if 0fp = and 6 hours if 1fp =  (every 

simulation hits the iteration ceiling) on a X5675@3.07GHz laptop for 2,000 simulations. 

The fp when CPT1 is incorporated is found to be 0.06, which is lower than the one 

estimated from unconditional simulations. The same calculations have been conducted 
when CPT1 and CPT2 are incorporated. The estimated fp  is found to be 0.007. When 

all three CPTs are incorporated, the fp  is 0. These results show that incorporating site 

investigation data have significant influence on the estimated probability of failure. 

 
 
 

 
(a) A typical failure using unconditional random field 

 
(b) A typical failure using unconditional random field 

 

 
(c) A typical failure using conditional random field 
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(b) A typical failure using conditional random field 
Figure 4 Typical failure mechanisms( 10mθ = ) 

 

In order to investigate the confidence in the estimated fp , the probability density 

function (PDF) of FS are simulated by two thousand simulations.  Figure 5 shows the 
PDF of FS calculated by conditional RFEM simulations. The associate statistics of FS 
are shown in  
 
Table 1. Incorporating only CPT1, the coefficient of variation (COV) of FS is 25.92%. 
The COV of FS is reduced to 11.30% when incorporating all three CPTS. It can be seen 
from  
 

Table 1 that incorporating more site investigation data, the uncertainty in the estimation 
can be significantly reduced. 

 

 

Figure 5 Probability density functions of factor of safety ( 10mθ = ) 
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Table 1 Probability of failure and the statistics of FS 

case fp  Variance 
of FS 

Mean of 
FS 

COV 
(%) 

Unconditional 0.1705 0.046 1.21 17.74 
Conditioned  on  CPT1 0.06 0.157 1.53 25.92 

Conditioned  on  CPT1 and CPT 
2 

0.007 0.075 1.54 17.75 

Conditioned  on  CPT1, CPT 2  
and CPT3 0 0.029 1.51 11.30 

 

Conclusion 

The conditional random field method enables the site investigation data be incorporated 
directly in probabilistic analysis. The numerical study shows that constraining the 
random field by the investigation data significantly affects the result of probability of 
failure. The coefficient of variation of factor of safety can be reduced by incorporating 
more site investigation data. The method proposed in this paper can increase the 
confidence in probabilistic designs. 
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