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Abstract 
 
In this paper results of stochastic analysis of bearing capacity of a shallow foundation on a two-
layered soil are presented. Computations use the random finite element method (RFEM) which 
allows soil strength parameters to be modeled as random fields. In this study, both the friction 
angle and the cohesion were characterized by two dimensional random fields using bounded and 
lognormal distributions respectively. Other soil properties such as Young’s modulus, Poisson’s 
ratio and soil unit weight were assumed to be deterministic, as their influence on bearing 
capacity can be neglected. Results are presented for the cases of “weak” over “strong”; and 
“strong” over “weak” while simultaneously considering various thicknesses of the layers, 
anisotropic correlation lengths and the coefficients of variation of the friction angle and 
cohesion. Conclusions indicate the cases in which stochastic characterization of soil parameters 
can significantly affect the stochastic bearing capacity of shallow foundations. 
 
INTRODUCTION 
 
The spatial variability structure of soils strongly influences the shallow foundation designing 
when it is taken into account. Therefore the theory of random fields seems to be an appropriate 
tool in a description of soil properties if bearing capacity is under consideration. Several papers 
have been published that have utilized random finite element method (RFEM) to evaluate 
probabilistic characteristic of bearing capacity (Griffiths and  Fenton,  2001; Fenton and 
Griffiths, 2003; Pieczyńska et al., 2011; Pieczyńska-Kozłowska et al., 2015; Zaskórski and Puła, 
2016). In the paper by Pieczyńska et al. (2015) bearing capacity of an embedded shallow 
foundation has been evaluated under an assumption that soil strength parameters have been 
described by anisotropic random fields. However, only one soil layer was considered. In the 
present study the authors made an attempt to generalize former papers for the case layered 
subsoil.  
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SOIL PROPERTIES 
 
Random fields in RFEM are generated by local average subdivision – LAS method (Fenton and 
Vanmarcke, 1990). In this study both soil layers are cohesive and shear strength parameters (the 
cohesion and the friction angle) are described by random fields. The cohesion is characterized by 
a lognormal distribution obtained by the transformation ܺ = exp	{ܼ}. Z is a normally distributed 
random field. The probability density function of X is given by the following equation 
 ݂ሺݔሻ = ଵ௫ఙౢ౤೉√ଶ஠ ∙ exp ൜− ଵଶ ቀ୪୬௫ିఓౢ౤೉ఙౢ౤೉ ቁଶൠ ,              (1) 

 
where ߤ୪୬௑  is a mean value and ߪ୪୬௑  denotes a standard deviation of an underlying Gaussian 
distribution of Z. The friction angle is described by a bounded distribution which the probability 
density function takes form 
 

௫݂ሺݔሻ = √గሺ௕ି௔ሻ√ଶ௦ሺ௫ି௔ሻሺ௕ି௫ሻ ∙ exp ൜− ଵଶ௦మ ቂπln ቀ௫ି௔௕ି௫ቁ − ݉ቃଶൠ ,             (2) 

 
where a and b are min. and max. values of a parameter, s is a scale factor correlated with a 
standard deviation of the property, m is a location parameter and ݔ ∈ ሺܽ, ܾሻ . The above 
distribution can be generated from a standard normal random field ܼ0  by the following 
transformation 
 ܺ = ܽ + ଵଶ ሺܾ − ܽሻ ቄ1 + tanh ቀ௦௓0ଶ஠ቁቅ.               (3) 

 
More details can be found in Fenton and Griffiths (2008). Moreover each random field is 
characterized by its correlation structure. Within this study the ellipsoidal correlation function for 
anisotropic case was considered 
ሺ߬ሻߩ  = expቌ−ඨቀଶ|ఛమ|ఏೣ ቁଶ + ൬ଶ|ఛభ|ఏ೤ ൰ଶቍ,               (4) 

 
where ߠ௫  and ߠ௬  denote fluctuation scales along directions ݔ and ݕ. Furthermore ߬ଵ and ߬ଶ are 

the vertical and horizontal distances respectively, between two points in two-dimensional space. 
The random fields of cohesion and friction angle are assumed to be stochastically independent. 
Table 1 presents applied soil properties of each layer of soil. 
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Table 1. Summary of soil properties 
Parameter Symbol Unit Weak layer Strong layer 
Unit weight γ [kN/m3] 20 21 

Friction angle 

Distribution [-] bounded bounded 
µφ [ᵒ] 10 21 
σφ [ᵒ] 1,5 3,20 
φmin [ᵒ] 5 11 
φmax [ᵒ] 15 31 

s [-] 1,94 2,29 

Cohesion 

Distribution [-] lognormal lognormal 
µc [kPa] 20 20 20 38 38 38 
σc [kPa] 5 10 15 9,5 19 28,5 

COV [%] 25 50 75 25 50 75 
Dilation angle ψ [ᵒ] 0 0 

Young 
modulus 

E [MPa] 15 35 

Poisson ratio ν [-] 0,3 0,3 
Scale of 

fluctuation 
θx [m] 10 10 
θy [m] 0,4; 0,8; 1,6; 2,4; 3,2 0,4; 0,8; 1,6; 2,4; 3,2 

 
NUMERICAL MODELLING OF THE SOIL PROFILES 
 
Stochastic analysis were performed in program created in FORTRAN which was based on 
RBEAR2D code (this code can be found on the website http://www.engmath.dal.ca/rfem/). The 
size of soil model was calibrated so that the boundary conditions had no influence on the bearing 
capacity results. A 12,0×4,0m mesh was considered the suitable mesh size, which is equal to 120 
elements in the X direction and 40 elements in the Y direction. Each element is 0,1×0,1m. The 
nodes on the bottom boundary of the mesh model are fixed. The left and right boundaries are 
constrained against horizontal displacement and are free to slide vertically. 
Footing width was set on 0,8m and embedment on 1,0m. The depth of the foundation in the 
model is represented by the load applied on the level of the footing equal to the unit weight of 1st 
layer multiplied by H=1,0m. The soil model is shown in Figure 1. 
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Table 2. Summary of considered cases 

Group Case 
Thickness of 

1st layer 
COV of soil 
parameters 

Vertical scale of 
fluctuation 1st layer 2nd layer 

h1 [m] φ [%] c [%] θy 

A 

A1 

0,4-3,2 15 25 

θy1 = θy2 – variable strong weak 
A2 θy1 = θy2 – variable weak strong 
A3 θy1 – variable strong weak 
A4 θy1 – variable weak strong 
A5 θy2 – variable strong weak 
A6 θy2 – variable weak strong 

B 

B1 

0,4-3,2 15 50 

θy1 = θy2 – variable strong weak 
B2 θy1 = θy2 – variable weak strong 
B3 θy1 – variable strong weak 
B4 θy1 – variable weak strong 
B5 θy2 – variable strong weak 
B6 θy2 – variable weak strong 

C 

C1 

0,4-3,2 15 75 

θy1 = θy2 – variable strong weak 
C2 θy1 = θy2 – variable weak strong 
C3 θy1 – variable strong weak 
C4 θy1 – variable weak strong 
C5 θy2 – variable strong weak 
C6 θy2 – variable weak strong 

 
RESULTS 
 
On Figures 2, 3 and 4 are presented results for minimum and maximum values of the considered 
vertical scale of fluctuation (θy=0,4m; 3,2m) to make them more transparent and clear.   
It can be noticed that mean values of bearing capacity increase with thickness of 1st layer in case 
strong-weak (Figures 2a, 3a, 4a). This phenomenon is cost by increase of the strong layer 
thickness. Furthermore mean values of bearing capacity stabilize substantially on level of 3B 
(h1=2,4m) regardless parameters of cohesion. This is the consequence of the vanishing influence 
of the weak 2nd layer. 
Opposite situation is in case weak-strong – the thicker 1st layer the smaller mean value of 
bearing capacity. In this situation mean values of bearing capacity stabilize on level of 1B 
(h1=0,8m). In Figure 2b the case C2 (θy=3,2m, COV of cohesion equals 75%) is an exception. It 
can be observed that for h1=3,2m, the mean value of bearing capacity rises. Most probably it is 
associated with the number of realization which in this case shall be greater than 500. 
The conclusions formulated above are not identical with engineering intuition. In many 
deterministic approaches it is believed that the presence of the second layer is negligible if the 
thickness of 1st layer is greater than 2B. 
COV of bearing capacity increases with the thickness in case strong-weak as it can be observed 
on Figures 2a, 3a and 4a. 
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Greater mean values of bearing capacity are achieved for greater values of vertical scales of 
fluctuation for case strong-weak (see Figures 2a and 3a), however the differences are not large. 
As regards COV of bearing capacity it can be noticed that their values are practically 
independent on the thickness of 1st layer. 
In cases weak-strong (A6, B6, C6) coefficients of variation of bearing capacity are almost 
independent on the vertical fluctuation scale in 2nd layer. 
 
 
 
 

  
a) Cases A1, B1, C1 (1st layer – strong, 2nd layer – weak) 
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b) Cases A2, B2, C2 (1st layer – weak, 2nd layer – strong) 

Figure 2. Mean values and the COV of bearing capacity in dependence of thickness of 1st 
layer (in legend in brackets are presented COV of cohesion) – θy1=θy2 - variable 

 
a) Cases A3, B3, C3 (1st layer – strong, 2nd layer – weak) 
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b) Cases A4, B4, C4 (1st layer – weak, 2nd layer – strong) 

Figure 3. Mean values and the COV of bearing capacity in dependence of thickness of 1st 
layer (in legend in brackets are presented COV of cohesion) – θy1 - variable 

  
a) Cases A5, B5, C5 (1st layer – strong, 2nd layer – weak) 
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b) Cases A6, B6, C6 (1st layer – weak, 2nd layer – strong) 

Figure 4. Mean values and the COV of bearing capacity in dependence of thickness of 1st 
layer (in legend in brackets are presented COV of cohesion) – θy2 - variable 

CONCLUSION 
 
The new code for the evaluation of random bearing capacity of two-layered subsoil was 
elaborated. Considered problem is the generalization of former works mentioned in the 
introduction of this paper. The constructed code enables to investigate the influence of thickness 
of layers, soil properties (the cohesion, the friction angle) and their correlation structure on 
random bearing capacity. 
The stabilization of the mean value of bearing capacity on 3B level was observed in the case 
strong-weak configuration and on 1B level in the case weak-strong configuration. The above 
conclusion is no longer valid for COV of bearing capacity. 
The strong-weak configuration results in increasing of the expected value of bearing capacity as 
a function of a vertical fluctuation scale. The opposite trend is observed in the weak-strong case. 
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