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ABSTRACT: In a probabilistic slope stability analysis, the failure probability 

associated with the most critical slip surface (the one with the minimum reliability 

index) is known to be smaller than that obtained for the system as a whole where all 

potential slip surfaces are considered. System slope reliability has been studied in 

recent years by several probabilistic methods, including the Random Finite Element 

Method (RFEM), Limit Equilibrium Methods (LEM) combined with First Order 

Reliability Methods (FORM), and Response Surface Methods (RSM).  The only one 

of these methods that can properly account for spatial variability however is the 

RFEM. In this paper, we set up a benchmark slope for system reliability analysis and 

compare the probability of failure obtained both with and without inclusion of spatial 

variability. The paper will give recommendations for the types of slope reliability 

problems that benefit from proper consideration of spatial variability. 

 

 

INTRODUCTION 

 

   There are many potential slip surfaces in a slope, each of which has a finite 

probability of failure associated with it, so probabilistic slope stability analysis should 

be treated as a system reliability problem. As pointed out by Cornell (1967), a 

system's reliability is that of all potential slip surfaces, and the failure probability of a 

system will be larger than that for any single slip surface. The difference depends on 

the correlation between the failure probabilities of the different slip surfaces, for 

which no general formulation is available. System slope reliability has attracted a lot 

of research interests in recent years. Oka and Wu (1990) and Chowdhury and Xu 

(1995) presented system reliability analysis for a particular slope in which several slip 

surfaces were poorly correlated. Ching et al. (2009) analyzed several slopes using 

Monte Carlo simulation (MCS) and importance sampling (IS) methods. The results 

were compared with single-mode FORM analysis. It was then concluded that single-

mode FORM analysis significantly underestimated the failure probability, and that 
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both the IS and MCS methods provided unbiased estimates of the failure probability. 

Huang et al. (2010) showed that the Random Finite Element Method (RFEM) can 

accurately predict the system probability of failure of slopes. Low et al. (2011) used 

multi-mode FORM to study reliability bounds of slopes.  

 
   In this paper, the slope studied by Ching et al. (2009) and Low et al. (2011) is 

chosen as a benchmark. Three types of analyses were conducted on this slope: (i) 

deterministic analyses were conducted to investigate failure regions, (ii) probabilistic 

analyses using Monte Carlo simulations were conducted to investigate the probability 

density function of the factor of safety ( FS ), and (iii) analyses were conducted to 

investigate the influence of spatial variability on the probability of failure ( fp ).  

 

 

DETERMINISTIC ANALYSIS 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 A two layer undrained slope 

 

 
    The profile of the two layer undrained slope to be investigated is shown in Fig. 1. 

The slope has height 24.0 mH  . The upper layer has soil unit weight 
3

1 19.0 kN/m   and shear strength 1 120.0 kPauc  . The lower layer has the same 

unit weight but a different shear strength given by 2 160.0kPauc  . Using the strength 

reduction method described by Griffiths and Lane (1999), the FS  of the two layer 

slope was found to be 1.97. The deformed mesh at failure is shown in Fig. 2. It can be 

seen from Fig. 2 that the critical failure mode associated with the minimum FS  goes 

deep and is almost circular. 
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Fig. 2 Deformed mesh at failure when 1 120.0 kPauc  , 2 160.0kPauc  , 1.97FS   

 

 

   In order to investigate failure regions, an exhaustive deterministic analysis was 

conducted by varying the strength of the two layers. The contours of FS  are shown 

in Fig. 3. From the contour line of 1.0FS  , it is clear that there are three failure 

regions ( 1.0FS  ). The first one corresponds to a shallow failure mechanism which 

is caused by low strength of the upper layer (i.e., 1 50.0 kPauc  ). In this region, no 

matter how strong the lower layer is, the slope fails ( 1.0FS  ). The second failure 

region is associated with a deep failure mechanism which is caused by low strength 

of the lower layer (i.e., 2 40.0 kPauc  ). In this region, no matter how strong the 

upper layer is, the slope fails ( 1.0FS  ).The third failure region is the combination 

of 1uc  and 2uc  that falls below the slope part of the contour line of 1.0FS  .  

 

For failure region 1, the slip surface is essentially circular and contained in the upper 

layer as shown in Fig. 4. For failure region 2, a deep failure mechanism is caused by 

the low strength of the lower layer and the slip surface is non-circular as shown in 

Fig. 5. For failure region 3, two failure mechanism can coexist at the same time as 

shown in Fig. 6. It should be mentioned that the ordinary method of slices and 

simplified Bishop method use circular slip surface and  are not applicable for failure 

region 2. Failure region 2 was ignored when circular slip surface was used (e.g., Fig 

.7 in Ching et al. 2009). 

 



 

Fig. 3 Contour of factor of safety 

 

  

 

Fig. 4 Deformed mesh at failure when 1 45.0 kPauc  , 2 160.0kPauc  , 0.89FS   

 

 

Fig. 5 Deformed mesh at failure when 1 120.0 kPauc  , 2 30.0kPauc  , 0.76FS   

 

 

Fig. 6 Deformed mesh at failure when 1 46.0 kPauc  , 2 75.0kPauc  , 0.89FS   
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PROBABILISTIC ANALYSIS 

 

   The undrained shear strengths 1uc  and 2uc  are assumed to be random variables 

characterized statistically by lognormal distributions. The mean values are

1
120kPa

uc   and 
2

160kPa
uc  respectively. The coefficient of variation for both 1uc  

and 2uc  are 
1 2

0.3
u uc cV V  . In this study, 100,000 simulations were performed for each 

case. Each layer is independent and given a value at random from their respective 

distributions. The influence of the number of simulations on pf is shown in Fig. 7 

and  it can be seen from Fig. 7 that 40,000 simulations are sufficient to obtain 

reasonably repeatable results.  

 

 

Fig. 7 Probability of failure verse number of simulations 

 

 

   The fp estimated by 100,000 simulations is fp =0.0047. The coefficient of 

variation of fp  is approximately (e.g., Fenton and Griffiths 2008), 
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where simn  is the number of simulations. 

 

   The results are compared with Ching et al. (2009) and Low et al. (2011) in Table 1. 

 

 

 

 

 

 

 



 

 

Table 1 Comparison of fp  

 

 Ching et al. (2009) Low et al. (2011) This paper 

  Lower 

bound 

Upper 

bound 

 

fp  0.0044 0.0042 0.0044 0.0047 

fpV  0.15  0.046 

n  10,000  100,000 

 

Since LEM ignored failure region 2 (e.g., Fig .7 in Ching et al. 2009), the fp  

estimated in this study is higher than that obtained by Ching et al. (2009) and Low et 

al. (2011). The difference can be estimated by integration over failure region 2 as 
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where 
1ln uc ,

1ln uc ,
2ln uc and 
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   The histogram of FS  obtained in this study (using at least 50,000 simulations) led 

to the two distinct distributions shown in Fig. 8. The link between the distributions 

and the nature of the failure mechanisms is currently under further investigation.  

 



 

Fig. 8 Histogram of factor of safety from 100,000 simulations 

 

 

INFLUENCE OF SPATIAL VARIABILITY ON fp  

 

   RFEM (Griffiths and Fenton 2000, 2004 and Fenton and Griffiths 2008) has used to 

investigate the influence of spatial variability on fp . The RFEM uses elastoplasticity 

in a finite-element model combined with random field theory in a Monte-Carlo 

framework. The input parameters relating to the mean, standard deviation and spatial 

correlation length are assumed to be defined at the “point” level. Full account is taken 

of local averaging and variance reduction (Fenton and Vanmarcke 1990) over each 

element. Since the actual undrained shear strength field is lognormally distributed, its 

logarithm yields an “underlying” normally distributed (or Gaussian) field. The spatial 

correlation length is measured with respect to this underlying field. The spatial 

correlation length (e.g. 
1ln uc ) describes the distance over which the spatially random 

values will tend to be significantly correlated in the underlying Gaussian field. Thus, 

a large value of 
1ln uc  will imply a smoothly varying field, while a small value will 

imply a ragged field. In this work, an exponentially decaying (Markovian) correlation 

function is used of the form, for example: 
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where     is the correlation coefficient between properties assigned to two points 

in the random field separated by an absolute distance  .  

 

   In the current study, the spatial correlation length has been non-dimensionalized by 

dividing it by the height of the embankment H  and will be expressed in the form, for 

example: 

1 1ln /
u uc c H                                                  (5) 



   In order to study the  fp  of layered slopes, the RFEM was further developed to 

have the ability to simulate multiple independent random fields. Fig. 9 and 10 show 

two typical simulations at failure. The figure depicts the variation of 1 2 and u uc c , and 

have been scaled in such a way that dark and light regions depict “strong” and 

“weak” soil respectively. When two failure mechanisms coexist at the same time, Fig. 

9 suggests that using rigid slices in LEM is inappropriate. Furthermore, it can be seen 

from Fig. 10 that the failure mechanism is non-circular. Both these examples  suggest 

that the use of Limit Equilibrium Methods with circular slip surfaces is inappropriate.  

 

 

Fig. 9 Typical simulation when 
1 2

1.0
u uc c   , 1.58FS   

 

Fig. 10 Typical simulation when 
1 2

1.0
u uc c   , 2.68FS   

 

   The influence of spatial variability on fp was studied by varying 
1 2u uc c  in the 

range {0.5, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256.0, 512.0}. For cases when 

1 2
{0.5,  1.0,  2.0}

u uc c   , one million simulations were conducted. For other 

cases, One hundred thousand  simulations were conducted. Table 2 shows the 

influence of spatial variability on fp . Also shown in Table 2 is the coefficient of 

variation of fp .  It should be mentioned that for case when 
1 2

0.5
u uc c   , there 

was no failure from one million simulations. 

 

   It can be seen from Table 2 that decreasing spatial variability will decrease fp . It is 

interesting to note that when
1 2

32.0
u uc c   , the influence of spatial variability on 

fp  is negligible. 

 

 

 



Table 2. Influence of spatial variability on fp  

 

1 2u uc c   ˆ
fp
 

simn  
ˆ fpV

 
0.5 <1E-6 1000000  

1 4.70E-05 1000000 0.145862 

2 5.22E-04 1000000 0.043757 

4 0.0016 100000 0.078994 

8 0.0027 100000 0.060776 

16 0.0038 100000 0.051201 

32 0.0046 100000 0.046518 

64 0.0046 100000 0.046518 

128 0.0047 100000 0.046018 

256 0.0046 100000 0.046518 

512 0.0047 100000 0.046018 

 

 

 

CONCLUSIONS 

 

   A benchmark two layer slope for system reliability analysis is presented. 

Deterministic analysis showed that there are three failure regions associated with 

different combinations of shear strength of the two layers. Probabilistic analysis 

showed that fp  obtained by FEM is consistently higher than that obtained by LEM. 

The histogram of factor of safety from 100,000 simulations showed clearly two 

failure modes. Probability of failure decreases with increasing spatial correlation 

length.  
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