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Abstract: Reliability tools have been applied to slope stability analysis more than 

any other geotechnical application on account of the readily understood concept of 

“probability of failure” as an alternative or complement to the traditional “factor of 

safety”. Probabilistic slope stability methods in the literature are reviewed. Particular 

attention is focused on the ability of the methods to correctly model spatially varying 

soil properties. A benchmark slope is reanalyzed and conclusions reached about their 

suitability for meaningful and conservative prediction of slope reliability.  
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Introduction 

Slope stability analysis is a branch of geotechnical engineering that is highly 

amenable to probabilistic treatment, and has received considerable attention in the 

literature. Almost all probabilistic methods described in the literature have at some 

point been applied to slope stability problems. A brief description of the reported 

probabilistic methods is presented below: 

 

1) Direct integration method 

The probability of failure ( fp ) is obtained by direct integration of the 

probability density function of the factor of safety ( FS ).  
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This method requires that the probability density function of FS ,  FSf FS  

is known in advance which is rarely the case. 
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2) Point estimate method (PEM) 

The PEM (Rosenblueth 1975, 1981, Griffiths et al. 2002) is an alternative 

method for approximate estimation of statistical moments of  FSf FS  without 

needing information about the exact distribution of the input random variables. In this 

method, probability distributions for input continuous random variables are replaced 

by discrete or “lumped” equivalent distributions. The mean and variance of FS , 

where FS  depends on n  input random variables, can be found from an 

expressions of the form 
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where each random variable is fixed at a strategic value above and below its mean 

(Christian and Baecher 2002) and iP  are weighting coefficients 
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After the mean and standard deviation of FS  are determined, the reliability 

index can be calculated by 
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PEM does not require knowledge of the particular form of the probability 

density functions of the input random variables, however this approximate method it 

may lead to incorrect interpretations of the reliability if the performance function is 

highly nonlinear or the random variables asymmetric. The application of PEM 

requires 2n  evaluations of the performance function. The spatial correlation 

between the random variables can be accounted for in the weighting coefficients iP .  

 

3) First Order Second Moment Method (FOSM) 

The mean and variance of FS are approximated by a first-order Taylor series 

expansion about the mean values of random parameters that are characterized by their 

first two moments. The reliability index is calculated as 
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where n  is the number of random variables, 
ix  are the mean values of the random 

variables, and ,Cov i jX X    are the covariances between iX  and jX  which can 

account for spatial correlation. 

FOSM does not require knowledge of the particular form of the probability 

density functions of the input random variables. A serious problem with FOSM is that 

the reliability index it delivers depends on how the performance function is 

formulated, thus two people solving the same problem could obtain quite different 

results.  

 

4) First Order Reliability Method (FORM) 

FORM based on the Hasofer-Lind reliability index (Hasofer and Lind 1974), 

HL , assumes that the mean values of random variables lie on the safe side of the 

performance function. The method then obtains the reliability index, which is related 

to the minimum distance between the mean values and the limit state surface as 
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where iX  is the thi  random variable, N
i  is the equivalent normal mean of the thi  

random variable, N
i  is the equivalent normal standard deviation of the thi  random 

variable, {( ) / }N N
i i iX    is the vector of n  random variables reduced to standard 

normal space,  R  is the correlation matrix and g  is the limit state function. 

FORM has become popular with investigators in recent years because the 

reliability index it delivers is not dependent on the form of the performance function. 

In cases where no analytical equation exists for the performance function, the 

Response Surface Method (Box and Wilson 1951) can be introduced to obtain an 

approximated performance function based on a curve fit. 

 

5) Monte Carlo simulation (MCS) 

Monte Carlo simulation samples random variables from their distributions and 

obtains the probability of failure directly by dividing the number of simulations 

which failed by the total number of simulations. MCS is usually used to check the 

results obtained by the methods mentioned previously. If the probability density 

function of the performance function is known or estimated in advance, “importance 

sampling” (Harbitz 1983, Shinozuka 1983) can be used to reduce the number of MCS 

simulations needed.  

A deterministic slope stability analysis method such the Limit Equilibrium 

(LEM) or Finite Element Method (FEM) is needed as the basis of a probabilistic 

slope analysis. The choice of deterministic slope stability analysis method also 

determines how spatial variability can be included. Some investigators have 



 

 

combined the LEM with random field theory. Table 1 provides a list of 2D slope 

reliability publications in the literature that combined the LEM with 1-d random field 

theory. The inherent nature of LEM is that it leads to a critical failure surface, which 

in 2D analysis appears as a line which could be non-circular. The influence of the 

random field is only taken into account along the line and is therefore 

one-dimensional.  

In recent years, the present authors have been pursuing a more rigorous 

method of probabilistic geotechnical analysis (e.g. Griffiths and Fenton 2004, 

Griffiths et al. 2009), in which nonlinear finite-element methods are combined with 

random field generation techniques. This method, called here the ‘‘random finite 

element method’’ (RFEM), fully accounts for spatial correlation and averaging, and 

is also a powerful slope stability analysis tool that does not require a priori 

assumptions related to the shape or location of the failure mechanism. In this study, 

the limitations of combining LEM with 1D random field are investigated. A 

benchmark slope problem is used to show that combining LEM with 1D random 

fields can lead to a lower (unconservative) probability of failure than RFEM.  

 

Table 1. 2D slope reliability analyses by LEM methods and 1D random field 

Authors Probabilistic method Deterministic method 

Catalan and Cornell (1976) FOSM Level-crossing method 

Alonso (1976) FOSM Bishop 

Li and Lumb (1987) FORM Morgenstern-Price 

Mostyn and Soo (1992) FORM Morgenstern-Price 

El-Ramly et al. (2002) MCS Bishop 

Low (2003) FORM Spence 

Babu and Mukesh (2004) FOSM Bishop 

Cho (2007) MCS LEM 

Low et al. (2007) FORM Spencer 

Hong and Roh (2008) MCS Chen and Morgenstern 

 

Taking spatial variability into account 

Soils are rarely homogeneous in nature and sometimes consist of several 

different layers of soil/rock (especially in the vertical direction) due to different 

deposition conditions and different loading histories. Constructed slopes sometimes 

use different materials to accomplish different functions. For example, compacted 

clay can serve as a water-proof core of a zoned earth dam. The properties of the clay 

core are totally different from the rocks or soils that constitute the shoulders of 

embankment. The first step to model the spatial variability of such slopes is to 

distinguish the limit of spatial continuity, beyond which essentially no correlation 

between soil data exists. The second step is to model the spatial correlation structure 



 

 

that describes the variation of soil properties from one point to another in each 

soil/rock region.  

Most numerical solution algorithms require that all continuous parameter 

fields be discretized. The variance of the strength, spatially averaged over some 

domain such as a finite element or finite difference zone, is less than the variance at 

the “point” level. As the size of the domain over which the soil property is being 

averaged increases, the variance decreases.  

In LEM, the soil properties are averaged along the bottom line of each slice as 

shown in Fig. 1. The variance reduction factor for the thi slice is calculated as 
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and the spatial correlation coefficients between segments are estimated using Eq. (7).  
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where ,  
i jL Lc c   are the locally averaged soil properties. 

The critical probabilistic slip surface is determined by searching all possible 

slip surfaces (e.g. Bhattacharya et al. 2003). Usually, the existing deterministic slope 

stability program is modified such that the factor of safety is replaced with the 

reliability index as the objective function. The critical deterministic surface is used as 

the starting slip surface for this search. The critical probabilistic slip surface is 

typically in a different location but close to the critical deterministic slip surface 

(Hassan and Wolff 1999). It should be noted that locally averaged properties (mean, 

variance and correlation coefficients) need to be recalculated for each slip surface 

because the bottom secant-line of each slice is varying.  

If 2D RFEM is used, the soil properties are averaged over the area of each 

element as shown in Fig. 1. The variance reduction factor is calculated as 
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Full account is taken of local averaging, variance reduction and cross 

correlation over each element by the Local Average Subdivision Method (Fenton and 

Vanmarcke 1990). The random field is initially generated and properties assigned to 

the elements. After application of gravity loads, if the algorithm is unable to converge 

within a user-defined iteration ceiling (see e.g. Griffiths and Lane 1999), the 

implication is that no stress distribution can be found that is simultaneously able to 

satisfy both the Mohr-Coulomb failure criterion and global equilibrium. If the 

algorithm is unable to satisfy these criteria, failure is said to have occurred. The 



 

 

analysis is repeated numerous times using Monte-Carlo simulations. Each realization 

of the Monte-Carlo process involves the same mean, standard deviation and spatial 

correlation length of soil properties, however the spatial distribution of properties 

varies from one realization to the next. Following a “sufficient” number of 

realizations, the  fp  can be easily estimated by dividing the number of failures by 

the total number of simulations. The analysis has the option of including cross 

correlation between properties and anisotropic spatial correlation lengths (e.g. the 

spatial correlation length in a naturally occurring stratum of soil is often higher in the 

horizontal direction). Further details of RFEM can be found in Griffiths and Fenton 

(2004) and Fenton and Griffiths (2008).  

 

 

 

  

 

 

 

 

 

 

Fig. 1. 1D and 2D random fields in Limit Equilibrium Method and RFEM 

 

Numerical example 

A benchmark two-layered slope that has been used by several investigators 

(e.g., Hassan and Wolff 1999 and Cho 2007) has been reanalyzed in the current paper. 

The slope section with height 10.0 mH  is shown in Fig. 2. The soil parameters (unit 

weight, friction angle, and cohesion), are modeled as lognormally distributed random 

variables with parameters given in Table 3.  

 

Table 3. Statistical properties of soil parameters 

 
1  

3kN/m  

1c  
2kN/m  

1  
2  

3kN/m  

2c  
2kN/m  

2  

  18 38.31 0  18 23.94 12  

v  0.05 0.4 - 0.05 0.2 0.1 

 

Cho (2007) obtained a deterministic factor of safety of 1.59 based on mean 

property values using Spencer’s (LEM) method which can be compared with 1.61 

using the authors’ finite element method. The deterministic slip surface by finite 
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elements is shown in Fig. 3, which is very close to that obtained by Cho (2007). 

Assuming perfect spatial correlation, Cho (2007) obtained a probability of failure of 

0.11 using FORM. 

 

 

 

 

 

 

 

 

Fig. 2 Two-layered slope finite element mesh 

 

Fig. 3 Critical deterministic slip surface 

 

Cho (2007) further considered the influence of a finite spatial correlation 

length on the slope reliability. This involved local averaging over the base of each 

slice (or group of slices) as described previously using Eq.(6) for variance reduction 

and Eq.(7) for correlation. It should be noted that the correlation coefficients between 

slices in different material regions should be zero. 

Assuming lognormal distributions and a spatial correlation length of 2m and 

20m for embankment and foundation, two different 1D random fields were generated 

as shown in Fig. 4. The 1D random fields shown in Fig. 4 have different means, 

standard deviations and correlation lengths. There is an obvious discontinuity 

between the two random fields.  

There is an obvious discontinuity at the boundary between the materials. The 

materials in the embankment and foundation could have different spatial correlation 

lengths however, but as far as we are aware, no LEM probabilistic study has 

considered this possibility. In the RFEM, different materials can be readily modeled 

with different random fields. Fig. 5 shows two independent 2D random fields 
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generated by RFEM according to the parameters shown in Table 3. The embankment 

and the foundation also have different spatial correlation lengths of 2m and 20m 

respectively. 

 

Fig. 4 Two independent 1D random fields for embankment and foundation 

 

 

Fig. 5 Slope at failure involving independent random fields for the embankment 

    and foundation 

 

The results obtained by Cho (2007) and RFEM are contrasted in Fig. 6 (A 

dimensionless spatial correlation length H  is used). It can be seen that 

combining LEM with 1D random fields gives lower probabilities of failure than 

RFEM. This is because the LEM method fixes the failure surface using deterministic 

methods (in this example, using Spencer’s method), while the RFEM allows the 

failure mechanism to develop wherever the weakest path through the soil layers 

happens to lie in a particular Monte-Carlo simulation. 

 



 

 

 

Fig. 6 Influnce of spatial correlation on slope reliability 

Concluding remarks 

Probabilistic slope stability methods are reviewed, and their ability to take 

spatial variability into account is analyzed in a benchmark problem. It is shown that 

LEM combined with 1D random fields can give lower probabilities of failure than 

RFEM which uses 2D random fields. The reason for this is that RFEM does not 

require a priori assumptions related to the shape or location of the failure mechanism. 

In an RFEM analysis, the failure mechanism has more freedom to “seek out” the 

weakest path through the random soil, which is in contrast to the LEM approach, 

where the failure surface location is fixed before the random field can be accounted 

for. 
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