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ABSTRACT

The ground is a complex engineering material and how to characterize it real-
istically is a very difficult problem. It is well known that the engineering properties of
the ground can vary quite dramatically from point to point throughout a site, and even
more so from site to site, and that these properties are highly uncertain. It is also well
known that the ground, when subjected to an imposed or self-load, will fail along its
weakest path, however tortuous that might be.

Given the complexity of the ground, it makes sense to characterize the ground
using models which allow for its quite uncertain spatial variability. It also makes sense to
use response prediction models which take both spatial variability in ground properties
and the tendency of failure to follow weakest paths through the ground into account.

The Random Finite Element Method (RFEM) combines spatially varying ran-
dom field ground models with the finite element method to yield a reliability-based
geotechnical methodology which accounts for both spatial variability and weakest path
failure mechanisms. Besides being able to realistically model spatial variability in
ground properties along with being able to follow the weakest path through the soil,
mass, RFEM also provides the significant advantage of being able to account for site
understanding in the design process.

This paper describes the Random Finite Element Method along with a few of
its significant results over a variety of common geotechnical problems. The latter
include ground-water modeling, shallow foundation settlement and bearing capacity,
deep foundation capacity, and slope stability. LRFD code development will be discussed
along the way.

INTRODUCTION

In an effort to harmonize with structural codes, geotechnical design codes around
the world are beginning to migrate towards some form of reliability-based design (RBD).
Significant steps in this direction can be found in, for example, Eurocode 7, 2003,
Australian Standard AS 5100, 2004, AASHTO, 2007, and the National Building Code
of Canada, 2005. These RBD provisions are most often presented in the form of a
Limit States Design (LSD), to define critical failure states, combined with load and
resistance factors calibrated to achieve the target reliabilities associated with the various

1



limit states. The use of load and resistance factors is generally referred to as Load and
Resistance Factor Design (LRFD).

By and large, the random characteristics of loads, or “actions”, in civil engineer-
ing projects, are fairly well known and so load factors are reasonably well established.
On the resistance side, for most common structural materials representative tests can
easily be performed, and have been, to establish material property distributions that
apply with reasonable accuracy anywhere that the material is used. Thus, resistance
factors for materials such as concrete, steel, and wood have been known for decades.

Unfortunately, the development of resistance factors for use in geotechnical
engineering is much more difficult than for quality-controlled engineering materials,
such as concrete, steel, or wood. For example, while the mean strength of a batch of
30 MPa concrete delivered to a site in one city, might differ by 5 to 10% from a batch
delivered to a site in a second city, the soil strengths at the two sites may easily differ
by orders of magnitude. A significant advantage of designing using quality-controlled
materials is that the general form and, in particular, the variance of the material property
distribution is well enough accepted by the engineering profession that only a few
samples of the material are deemed necessary to ensure design requirements are met.
That is, engineers rely on an a priori estimate of the material variance which means that
testing can be aimed at only ensuring that the mean material resistance is sufficiently
high (the number of samples taken is usually far too few to accurately estimate the
variance). This is essentially a hypothesis test on the mean with variance known.
Using this test to ensure that design requirements are met, combined with the known
distributions and resulting codified load and resistance factors, is sufficient to provide a
reasonably accurate reliability-based design.

Contrast the knowledge regarding the distribution of, say, concrete with that of
soils. In analogy to the above discussion, it would be nice to have a reasonably accurate
a priori estimate of soil property variance, so that only the mean soil property would
have to be determined via a site investigation. This a priori variance for soils would
generally be much larger than the actual variance at a single site, and its use would
typically lead to significant overdesign in the attempt to achieve a certain reliability. In
practice, due to the spatial persistence of ground properties, sites usually do not show the
same level of variability that one sees over very large distances. In fact, it is the residual
site specific variability about the locally estimated mean that governs site uncertainty.
So the problem becomes how to determine a reasonable a priori site variance for use in
reliability-base design?

The above discussion suggests that in order to achieve efficient reliability-
based geotechnical designs, site investigations must be intensive enough to allow the
estimation of both the soil mean and gain some idea of its variability – this level of site
investigation intensity is typically what is aimed at in modern geotechnical codes, with
varying degrees of success (for example, Australian Standard AS 4678, 2002, specifies
three different investigation levels, associated with three different reliability levels). To
date, however, little guidance is provided on how to determine “characteristic” design
values for the soil on the basis of the gathered data, nor on how to use the estimated
variance to adjust the design.

Another complicating factor, which is more of a concern in soils than in other
quality-controlled materials, is that of spatial variability and its effect on design relia-
bility. Soil properties often vary markedly from point to point and this variability can
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have quite different importance for different geotechnical issues. For example, footing
settlement, which depends on an average property under the footing, is only moderately
affected by spatial variability, while slope stability, which involves the path of least re-
sistance, is more strongly affected by spatial variability. In this paper, spatial variability
will be simply characterized by a parameter referred to here as the correlation length
– small correlation lengths imply more rapidly varying properties, and so on. In order
to adequately characterize the probabilistic nature of a soil and arrive at reasonable
reliability-based designs, then, three parameters need to be estimated at each site; the
mean, variance, and correlation length.

Fortunately, evidence compiled by the authors indicates that a ‘worst case’
correlation length typically exists – this means that, in the absence of sufficient data,
this worst case can be used in reliability calculations. It will generally be true that
insufficient data are collected at a site to reasonably estimate the correlation length, so
the worst case value is conservative to use in design.

Once the random soil at a site has been characterized in some way, the question
becomes how should this information be used in a reliability-based design? This paper
describes the random finite element method along with some of its significant results for
a number of common geotechnical problems. The tool can be used to assess geotechnical
risk in design and to aid in the development of reliability-based geotechnical design
codes.

All of the computer codes used in this paper are freely available at
http://www.engmath.dal.ca/rfem. The website also contains a list of the
papers by the authors which cover in considerably more detail the topics briefly presented
here. The interested reader will also find a very comprehensive description of the
background theory and all of these applications in Fenton and Griffiths (2008).

THE RANDOM FINITE ELEMENT METHOD

The Random Finite Element Method (RFEM) combines random field simulation
and finite element (FE) analysis within a Monte Carlo framework. One of the great
benefits of the finite element method is that it is easy to model problems with spatially
variable properties. For example a given soil deposit may consist of layers having
different permeability values in which rows of element may be assigned different prop-
erties. In the RFEM, this feature is taken to the limit by analyzing problems in which
every element in the mesh has a different property based on some underlying statistical
distribution. The finite element method used in RFEM is described in complete detail
by Smith and Griffiths (2004).

Random fields are used to realistically represent the ground, allowing for the
ground properties to varying spatially, as they do in nature. The simplest random
field models follow a normal distribution. This is because the multi-variate normal
distribution is relatively simple to use, both analytically, and to simulate. A normal
random field is characterized by a mean, µ, a variance, σ2, and a correlation structure.
The mean could be spatially varying, µ(x∼ ), and it is appropriate to do so when a trend
has been identified at the site being modeled. In concept, the variance could also be
spatially varying, σ2(x∼ ), although this is rarely implemented since a very extensive site
investigation would be required in order to even roughly estimate the variance trend.
Generally, the variance is assumed to be stationary, in other words the same everywhere.
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The most difficult aspect of random field models to both understand and estimate
is its correlation structure. The purpose of a correlation structure is to provide for some
‘persistence’ in the random field – points close together will have similar properties
while widely separated points could have quite different properties. This feature of
random fields is what makes it a realistic soil model since, in general, real soils also
tend to have similar properties at nearby points and less similar at larger separations.

Unfortunately, the correlation structure of a soil is very difficult to estimate even
if a large data set is available. For this reason, correlation structures used in practice
tend to be very simple, almost always requiring only a single parameter. One of the
simplest and most widely used correlation structure is the Markov correlation function,

ρ(τ ) = exp
�
��2jτ j

θ

�
(1)

which gives the correlation coefficient between two points separated by distance τ .
The single parameter, θ, is the correlation length, also called the scale of fluctuation.
Roughly speaking, it is the separation distance beyond which two points in the field are
largely uncorrelated (which, for a normal distribution, also means largely independent).

In practice, the estimation of the (directional) correlation length involves gather-
ing data at a series of n equispaced locations along a line and fitting Eq. 1 to the sample
correlation function,

ρ̂(j∆x) =
1

(n� j � 1)σ̂2
X

n−jX
i=1

(Xi � µ̂X)
�
Xi+j � µ̂X

�
(2)

where ∆x is the spacing between sample observations, X1, X2, . . . , Xn, and µ̂X and σ̂X

are the estimated mean and standard deviations. Reasonably accurate estimates of ρ̂
requires a large dataset, which for most geotechnical projects is not feasible. For almost
all sites, the correlation length remains unknown, which is why the existence of a ‘worst
case’ correlation length is so important. It allows a conservative reliability-based design
to proceed without having to specifically know the correlation length. As will be shown
in the following sections, the worst case correlation length tends to be of the same order
of magnitude as characteristic dimensions of the problem under design (e.g. foundation
width, distance to sampling location, etc.).

Once the theoretical nature of the random field has been decided upon (i.e. the
distribution form and its mean, variance, and correlation structure) the next step in
RFEM is the simulation of realizations of the random field. There are a variety of
possible simulation algorithms available (see, e.g., Fenton, 1994) but the approach that
the authors have elected to use in combination with the finite element method is the
Local Average Subdivision (LAS) method (Fenton and Vanmarcke, 1990). The LAS
method produces realizations of local averages of the random field, each local average
taken over a region the same size as the finite elements they are then mapped to. There
are a number of significant advantages to using local averages of ground properties in
conjunction with finite element analysis;
1) finite elements are basically continuum representations of the material they model

in which certain simplifying assumptions are made about the strain field within the
element. For example, the shape functions of a 4-node quadrilateral element are
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exact if loading/displacements are applied at the nodes and the material properties
within the element are constant. Thus, it is natural to assign the average of the
random field over the element domain to that constant property.

2) the statistics of local averages (mean and variance) change as the size of the aver-
aging domain changes, which is as specified by statistical theory. Thus, the use of
a local average random field is also consistent with the finite element method in the
sense that as the element (averaging domain) decreases, the representation of both
the FE and LAS models tend harmoniously towards the point-wise varying random
field.

3) most ground properties are measured as local averages in any case. For example,
hydraulic conductivity is not measured at the atomic level – it is almost always a
measure of the flow taking place through some volume of the permeable material,
which is clearly an average of some sort. These physical measurements show the
same variance reduction as the volume of the sample increases as do local averages
of a random field. Thus, local averages are consistent with physical measurements
of ground properties.

Figure 1 illustrates the basic idea behind Local Average Subdivision (see Fenton and
Griffiths, 2008, for the details). The method proceeds iteratively by first randomly
generating a local average for the entire field (Z0

1 ) which has the correct statistics for
an average of that dimension. The field is then subdivided into equal parts and the
local averages Z1

1 and Z1
2 are generated in such a way that they have the correct average

statistics, are properly correlated with one another, and average to the parent value, Z0
1 .

The process is repeated, progressively subdividing the field until the desired resolution
is achieved.

Stage 0

Stage 1

Stage 2

Stage 3

Stage 4

Z 1
0

Z 1
1 Z 2

1

Z 1
2 Z 2

2 Z 3
2 Z 4

2

Z 1
3 Z 2

3 Z 3
3 Z 4

3 Z 5
3 Z 6

3 Z 7
3 Z 8

3

Figure 1. Top-down approach to LAS construction of a local average ran-
dom process.

The final component of RFEM is the Monte Carlo simulation framework. Monte Carlo
simulation is a very straightforward way to estimate means, variances, and probabilities
associated with the response of complex systems to random inputs. While it is generally
preferable to evaluate these response statistics and/or probabilities analytically, where
possible, we are often interested in systems which defy analytical solutions. For such
systems, simulation techniques are ideal, since they are simple and lead to direct results.
The main disadvantage of simulation derived moments or probabilities is that they do
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not lead to an understanding of how the probabilities or moments will change with
changes in the system or input parameters. If the system is changed, the simulation
must be repeated in order to determine the effect on response statistics and probabilities.
In that analytical solutions are often not possible, this is usually an acceptable trade-off.

Monte Carlo simulation basically involves randomly generating a realization of
the spatially variable ground properties, determining the response of the geotechnical
system by a finite element analysis, and then repeating many times to estimate proba-
bilities and statistics of the response. An important question that arises is, how many
realizations should be performed in order to estimate probabilities, such as the proba-
bility of failure pf , to within some acceptable accuracy? This question is reasonably
easily answered by recognizing that each realization is a Bernoulli random variable that
either fails or doesn’t. The standard deviation of the probability estimate, p̂f is then
given by

σp̂f
'
r

p̂f q̂f

n
(3)

where the estimate of pf is used (since pf is unknown) and q̂f = 1� p̂f .
In general, if the maximum acceptable error on pf is e at confidence level (1�α),

then the required number of realizations to achieve this accuracy is

n = p̂f q̂f

�zα/2

e

�2
(4)

where zα/2 is the point on the standard normal distribution having area (probability)
α/2 to the right.

We note that we are often interested in estimating very small failure probabilities
– most civil engineering works have target failure probabilities between 1/1000 and
1/100,000. Estimating failure probabilities accurately in this range typically requires a
very large number of realizations. Since the system response sometimes takes a long
time to compute for each realization, for example when a non-linear finite element
analysis is involved, large numbers of realizations may not be practical.

There are at least three possible solutions when a large number (e.g. hundreds
of thousands or millions) of realizations are impractical;
1) perform as many realizations as practical, form a histogram of the response and fit

a distribution to the histogram. The fitted distribution is then used to predict failure
probabilities. The assumption here is that the distribution of the system response
continues to be modeled by the fitted distribution in the tails of the distribution.
This is often believed to be a reasonable assumption. In order to produce a reason-
ably accurate histogram, the number of realizations should still be relatively large
(e.g. 500 or more).

2) develop an analytical model for the probability of failure by determining the distri-
bution of the geotechnical response being studied. If the analytical model involves
approximations, as they often do, some simulations should be performed to validate
the model. The analytical model is then used to predict failure probabilities.

3) employ variance reduction techniques to reduce the required number of realizations
to achieve a desired accuracy. In the context of random fields, these techniques tend
to be difficult to implement and are not used by the authors. The interested reader
is referred to Law and Kelton (2000) or Lewis and Orav (1989).
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In summary, the Random Finite Element Method has a number of distinct advantages
over most other common probabilistic methods;
1) The LAS method allows for the realistic, efficient, and statistically accurate model-

ing of soils, in which the representation of spatial variability is a natural component,
2) The FE method is a sophisticated analysis tool which allows the soil to fail along

its weakest paths, without the need for a priori decisions about failure mechanisms
and locations. As a result, the combination of LAS and FE methods is an important
step forward in reducing geotechnical model error.

3) RFEM allows the effect of site investigation intensity on design reliability to be
studied (see the Sections on Settlement and Bearing Capacity to follow). Because
each random field realization is one possible ‘picture’ of the soil site, the entire
investigation/design process is easily simulated. The effect of various sampling
schemes on geotechnical system reliability is thus simply investigated. This ability,
in turn, allows the method to provide quantitative probabilistic guidance in the
development of reliability-based geotechnical design codes.

GROUND-WATER MODELING

Attention is now turned to the problem of steady-state seepage through a soil
mass with spatially random permeability. The goal of this section is to present RFEM
results which allow the assessment of probabilities relating to quantities of interest such
as steady-state flow rates, exit gradients, and uplift pressures, although we will only
present results relating to flow rates in this paper. The interested reader is directed to
Griffiths and Fenton (1993) or Fenton and Griffiths (2008) for further details.

The equation of steady groundwater flow followed here is Laplace’s equation

r � [K≈ rφ] = 0 (5)

where K≈ is the permeability tensor and φ is the hydraulic head.
To illustrate probabilistic ground-water modeling, a two-dimensional confined

seepage problem is considered, with particular reference to flow under a water retaining
structure founded on a stochastic soil. In the study of seepage through soils beneath
water retaining structures, three important quantities need to be assessed by designers
(see Figure 2); 1) seepage quantity, 2) exit gradients, and 3) uplift forces. The classical
approach for estimating these quantities involves the use of carefully drawn flow nets
(Casagrande 1937, Cedergren 1967, Verruijt 1970).

Various alternatives to flow nets are available for solving the seepage problem,
however in order to perform quick parametric studies, for example relating to the
effect of cut-off wall length, powerful approximate techniques such as the Method of
Fragments (Pavlovsky 1933, Harr 1962, Griffiths 1984) are increasingly employed. The
conventional methods are deterministic, in that the soil permeability is assumed to be
uniform (everywhere the same), although anisotropic properties and stratification can
be taken into account.

A more rational approach to the modeling of soil is to assume the permeability
of the soil underlying a structure, such as that shown in Figure 2, is random, i.e. the
soil is assumed to be a ‘random’ field (e.g. Vanmarcke 1984) characterized by a mean,
standard deviation, and some correlation structure. While higher joint moments are
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possible, they are very rarely estimated with any accuracy, so generally just the first two
moments (mean and covariance structure) are specified.

4.2 m 6 m 4.2 m

 4 m
 1 m

 3 m

Upstream
φ = 10

Downstream
φ = 0

Exit Gradient
ie

Uplift Force U

Figure 2. Confined seepage boundary value problem. The two vertical
walls and the hashed boundaries are assumed impermeable.

The stochastic flow problem posed in Figure 2 is far too difficult to contemplate solving
analytically (and/or the required simplifying assumption would make the solution use-
less). The determination of probabilities associated with flow, uplift, and exit gradients
are conveniently done using RFEM, described above. In detail, the simulated field of
permeabilities is mapped onto a finite element mesh, and potential and stream function
boundary conditions are specified. The governing elliptic equation for steady flow
(Laplace) leads to a system of linear ‘equilibrium’ equations which are solved for the
nodal potential values throughout the mesh using conventional Gaussian elimination
within a finite element framework.

Note that Eq. 5 is strictly only valid for spatially constant K. In this analysis
the permeability is taken to be constant within each element, its value being given by
the local geometric average of the permeability field over the element domain. The
geometric average was found to be appropriate for square elements by Fenton and
Griffiths (1993). From element to element, the value of K will vary, reflecting the
random nature of the permeability.

Generation of Permeability Values

The permeability is assumed to be lognormally distributed and is obtained
through the transformation

Ki = expfµln K + σln KGig (6)

in which Ki is the permeability assigned to the ith element, Gi is the local (arithmetic)
average of a standard Gaussian random field, G(x∼ ), over the domain of the ith element,
and µln K and σln K are the mean and standard deviation of the logarithm of K (obtained
from the ‘target’ mean and standard deviation µK and σK).
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Realizations of the permeability field are produced using LAS, discussed above,
which renders realizations of local averages, Gi, of a random field G(x∼ ) having zero
mean, unit variance, and a spatial correlation correlation length, θln K . As the correlation
length goes to infinity, Gi becomes equal to Gj for all elements i and j – that is the field
of permeabilities tends to become uniform on each realization. At the other extreme,
as the correlation length goes to zero, Gi and Gj become independent for all i 6= j – the
soil permeability changes rapidly from point to point.

In the two dimensional analyses presented in this section, the correlation lengths
in the vertical and horizontal directions are taken to be equal (isotropic) for simplicity.
Since actual soils are frequently layered, the correlation length horizontally is generally
larger than it is vertically. However, the degree of layering is site specific and is left
to the reader as a refinement. The results presented here are aimed at establishing the
basic probabilistic behaviour of flow under water retaining structures. In addition, the
two-dimensional model used herein implies that the out-of-plane correlation length is
infinite – soil properties are constant in this direction – which is equivalent to specifying
that the streamlines remain in the plane of the analysis. This is clearly a deficiency of
the two-dimensional model, however most of the characteristics of the random flow are
nevertheless captured by the two-dimensional model (Griffiths and Fenton, 1995).

Before discussing the results from multiple realizations, an example of what
a flow net might look like for a single realization is given in Figures 3a and 3b for
permeability statistics µK = 1 m/s, σK = 1 m/s and θln K = 1.0 m.

In Figure 3a, the flow net is superimposed on a ‘grey-scale’ which indicates the
spatial distribution of the permeability values. Dark areas correspond to low permeabil-
ity and light areas to high permeability. The streamlines clearly try to ‘avoid’ the low
permeability zones, but this is not always possible as some realizations may generate
a complete ‘blockage’ of low permeability material in certain parts of the flow regime.
This type of ‘blockage’ is most likely to occur where the flow route is compressed, such
as under a cut-off wall. An example where this happens is shown in Figure 3b. Flow in
these (dark) low permeability zones is characterized by the streamlines moving further
apart and the equipotentials moving closer together. Conversely, flow in the (light)
high permeability zones is characterized by the equipotentials moving further apart and
the streamlines moving closer together. In both of these figures the contrast between
stochastic flow and the smooth flow lines that would occur through a deterministic
and uniform field, is clear. In addition, the ability for the streamlines to avoid low
permeability zones means that the average permeability seen by the flow is higher than
if the flow was constrained to pass through the low permeability zones. This ability
to circumnavigate the blockages is why the geometric average is a better model for
two-dimensional flow than is the harmonic average.

Although local variations in the permeability have an obvious effect on the local
paths taken by the water as it flows downstream, globally the stochastic and determin-
istic flow nets exhibit many similarities. The flow is predominantly in a downstream
direction, with the fluid flowing down, under and around the cut-off walls. For this
reason the statistics of the output quantities might be expected to be rather insensitive to
the geometry of the problem (e.g. length of walls etc.), and qualitatively similar to the
properties of a 1-d flow problem, aside from an average effective permeability which is
higher than in the 1-d case.
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(a)

(b)

Figure 3. Stochastic flow net for two typical realizations.

Flow Rate Statistics

In the case of the flow rate, the global flow vector Q
∼

was computed by forming
the product of the potentials and the global conductivity matrix in the finite element
model. Assuming no sources or sinks in the flow regime, the only non-zero values in Q

∼
correspond to those freedoms on the upstream side at which the potentials were fixed
equal to 10 m. These values were summed to give the total flow rate Q in m3/s/m,
leading to a non-dimensional flow rate Q̄ defined by

Q̄ =
Q

µK∆H
(7)

where µk is the (isotropic) mean permeability and ∆H is the total head difference
between the up- and downstream sides. Q̄ is equivalent to the ‘shape factor’ of the
problem, namely the ratio of the number of flow channels divided by the number
of equipotential drops (nf/nd) that would be observed in a carefully drawn flow net;
alternatively it is also equal to the reciprocal of the ‘Form Factor’ utilized by the Method
of Fragments.

In the following, the distribution of Q̄ will be investigated. The actual flow rate
is determined by inverting Eq. 7,

Q = µK∆HQ̄ (8)

which will have the same distribution as Q̄ except with mean and standard deviation,

µQ = µK∆HµQ̄ (9a)
σQ = µK∆HσQ̄ (9b)

Figure 4a shows a significant fall in mQ̄ (where mQ̄ is the simulation-based
estimate of µQ̄) as σK/µK increases for θln K < 8 m. As the correlation length approaches
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infinity, the expected value of Q̄ approaches the constant 0.226. This curve is also shown
in Figure 4a, although it should be noted it has been obtained through theory rather than
simulation. In agreement with this result, the curve θln K = 8 m shows a less marked
reduction in mQ̄ with increasing coefficient of variation σK/µK . However, over typical
correlation lengths, the effect on average flow rate is slight. The decrease in flow rate as
a function of the variability of the soil mass is an important observation from the point of
view of design. Traditional design practice may very well be relying on this variability
to reduce flow rates on average. It also implies that ensuring higher uniformity in the
substrate may be unwarranted unless the mean permeability is known to be substantially
reduced and/or the permeability throughout the site is carefully measured.
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2 4 6 8
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0
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Figure 4. Effect of the correlation length and the coefficient of variation
of permeability on a) the mean flow rate, and b) the flow rate
standard deviation.

It may be noted that the deterministic result of Q̄ = 0.226 has been included in Figure
4a, and as expected, the stochastic results converge on this value as σK/µK approaches
zero.
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Figure 4b shows the behaviour of sQ̄, the estimate of σQ̄, as a function of σK/µK .
Of particular note is that sQ̄ reaches a maximum corresponding to σK/µK in the range
1.0 - 2.0 for finite θln K . Clearly, when σK = 0, the permeability field will be deterministic
and there will be no variability in the flow rate: σQ̄ will be zero. What is not quite
so obvious is that because the mean of Q̄ falls to zero when σK/µK ! 1 for finite
θln K (see Figure 4 – the curves go to zero as the permeability variability increases), the
standard deviation of Q̄ must also fall to zero, since Q̄ is nonnegative. Thus, σQ̄ = 0
when the permeability variance is both zero and infinite. It must, therefore, reach a
maximum somewhere between these two bounds. The point at which the maximum
occurs moves to the right as θln K increases.

In general, it appears that the greatest variability in Q̄ occurs under rather
typical conditions: ‘worst case’ correlation lengths between 1 and 4 m and coefficient
of variation of permeability of around 1 or 2.

SHALLOW FOUNDATION SETTLEMENT

Consider now a serviceability limit state, namely that of settlement of a shal-
low foundation. In structural design, serviceability limit states are investigated using
unfactored loads and resistances. In keeping with this, both the Eurocode 7 (2003) and
Australian Standard AS 2159 (1995) specify unit resistance factors for serviceability
limit states. The Australian Standard AS 5100.3 (2004) states that “a geotechnical
reduction factor need not be applied” for serviceability limit states.

Due to the inherently large variability of soils, however, and because settlement
often governs a design, it is the opinion of the authors that properly selected resistance
factors should be used for both ultimate and serviceability limit states in the settlement
design of most geotechnical systems. The Australian Standard AS 4678 (2002), for
example, agrees with this opinion and, in fact, distinguishes between resistance factors
for ultimate limit states and serviceability limit states – the factors for the latter are closer
to 1.0, reflecting the reduced reliability required for serviceability issues. Although
the Canadian Foundation Engineering Manual (3rd Ed.,1992) suggests the use of a
“performance factor” (foundation capacity reduction factor) of unity for settlement, it
goes on to say “However, in view of the uncertainty and great variability in in situ
soil-structure stiffnesses, Meyerhof (1982) has suggested that a performance factor of
0.7 should be used for an adequate reliability of serviceability estimates.”

If resistance factors are to be used, how should they be selected so as to achieve
a certain reliability? Statistical methods suggest that the resistance factors should be
adjusted until a sufficiently small fraction of possible realizations of the soil enter the
limit state being designed against. Unfortunately, there is only one realization of each
site and, since all sites are different, it is difficult to apply statistical methods to this
problem. For this reason geotechnical reliability-based code development has largely
been accomplished by calibration with past experience as captured in previous codes.
This is quite acceptable, since design methodologies have evolved over many years
to produce a socially acceptable reliability, and this encapsulated information is very
valuable – see, for example, Vick’s (2002) discussion of the value of judgement in
engineering.

On the other hand, a reliability-based design code derived purely from de-
terministic codes cannot be expected to provide the additional economies that a true
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reliability-based design code could provide, eg. by allowing the specification of the
target reliability (lower reliability for less important structures, etc.), or by improving
the design as uncertainty is reduced, and so on. To attain this level of control in a
reliability-based design code, probabilistic modeling and/or simulation of many possi-
ble soil regimes should also be employed to allow the investigation of the effect that
certain design parameters have on system reliability. This is an important issue – it
means that probabilistic modeling is necessary if reliability-based design codes are to
evolve beyond being mirror images of the deterministic codes they derive from. The
randomness of soils must be acknowledged and properly accounted for.

This section presents some results of a study in which a reliability-based settle-
ment design approach is proposed and investigated via simulation using the Random
Finite Element Method (RFEM). In particular, the effect of a soil’s spatial variability
and site investigation intensity on the resistance factors is quantified. The results of the
study can and should be used to improve and generalize “calibrated” code provisions
based purely on past experience. Further details of this study are given by Fenton et al.
(2005) or Fenton and Griffiths (2008).

The settlement problem considered is that of a rigid rough square pad footing
founded on the surface of a three-dimensional linearly elastic soil mass underlain by
bedrock at depth H , as illustrated in Figure 5. The soil property of primary interest
to settlement is elastic modulus, E, which is taken to be spatially random and may
represent both the initial elastic and consolidation behaviour. Its distribution is assumed
to be lognormal for two reasons: the first is that a geometric average tends to a lognormal
distribution by the central limit theorem and the effective elastic modulus, as ‘seen’ by
a footing, was found to be closely represented by a geometric average, and the second
is that the lognormal distribution is strictly nonnegative which is physically reasonable
for elastic modulus. The correlation structure is assumed to be Markovian (see Eq. 1).
Poisson’s ratio, having only a relatively minor influence on settlement, is assumed to be
deterministic and is set equal to 0.3.

B

9.6 (y)

H
 =

 4
.8

 (
z)

Figure 5. Cross-section through a realization of the random soil underly-
ing the footing. Darker soils are stiffer.

13



Realizations of the random elastic modulus field are produced using the Local Average
Subdivision (LAS) method which produces a discrete grid of local averages, Gi, of
a standard Gaussian random field, having correlation structure given by Eq. 1, where
averaging is performed over the domain of the i’th finite element. These local averages
are then mapped to finite element properties according to

Ei = exp fµln E + σln EGig (10)

Footing settlement is predicted here using a modified Janbu relationship (Janbu
et al.,1956), and this is the basis of design used in this study;

δp = u1
q̂B

Ê
(11)

where δp is the predicted footing settlement, q̂ = P̂ /B2 is the characteristic stress applied
to the soil by the characteristic load, P̂ , acting over footing area B�B, Ê is the estimate
of elastic modulus underlying the footing, u1 is an influence factor which includes the
effect of Poisson’s ratio (ν = 0.3 in this study). The characteristic load, P̂ , is often a
nominal load computed from the supported live and dead loads, while the characteristic
elastic modulus, Ê, is usually a cautious estimate of the mean elastic modulus under
the footing obtained by taking laboratory samples or by in-situ tests, such as CPT. In
terms of the footing load, P̂ , the settlement predictor thus becomes

δp = u1
P̂

BÊ
(12)

The relationship above is somewhat modified from that given by Janbu et al.
(1956) and Christian and Carrier (1978) in that the influence factor, u1, is calibrated
specifically for a square rough rigid footing founded on the surface of an elastic soil
using the same finite element model which is later used in the Monte Carlo simulations.
This is done to remove bias (model) errors and concentrate specifically on the effect of
spatial soil variability on required resistance factors. In practice, this means that the
resistance factors suggested here are upper bounds, appropriate for use when bias and
measurement errors are known to be minimal. A very close approximation to the finite
element results is given by the fitted relationship

u1 = 0.61
�

1� e−1.18H/B
�

(13)

Using Eq. 13 in Eq. 12 gives the following settlement prediction

δp = 0.61
�

1� e−1.18H/B
� P̂

BÊ

!
(14)

The reliability-based design goal is to determine the footing width, B, such that
the probability of exceeding a specified tolerable settlement, δmax, is acceptably small.
That is, to find B such that

P [δ > δmax] = pf = pm (15)
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where δ is the actual settlement of the footing ‘as placed’ (which will be considered
here to be the same as ‘as designed’). Design failure is assumed to have occurred if
the actual footing settlement, δ, exceeds the maximum tolerable settlement, δmax. The
probability of design failure is pf and pm is the maximum acceptable probability of
design failure.

A realization of the footing settlement, δ, is determined here using a finite
element analysis of a realization of the random soil. For u1 calibrated to the finite
element results, δ can also be computed from

δ = u1
P

BEeff
(16)

where P is the actual footing load and Eeff is the effective elastic modulus as seen by
the footing (ie, the uniform value of elastic modulus which would produce a settlement
identical to the actual footing settlement). Both P and Eeff are random variables.

One way of achieving the desired design reliability is to introduce a load factor,
α � 1, and a resistance factor, φg � 1, and then finding B, α and φg which satisfy both
Eq. 15 and Eq. 12 with δ = δmax. In other words, find B and α/φg such that

δmax = u1

 
αP̂

BφgÊ

!
(17)

and

P

"
u1

P

BEeff
> u1

 
αP̂

BφgÊ

!#
= pm (18)

In the above, we are assuming that the soil’s elastic modulus, E, is the ‘resistance’ to
the load and that it is to be factored due to its significant uncertainty.

Given α/φg, P̂ , Ê, and H , Eq. 17 is relatively efficiently solved for B using a
1-pt iteration;

Bi+1 = 0.61
�

1� e−1.18H/Bi

� αP̂

δmaxφgÊ

!
(19)

for i = 0, 1, . . . until successive estimates of B are sufficiently similar. A reasonable
starting guess is B0 = 0.4(αP̂ )/(δmaxφgÊ).

Collecting all remaining random quantities leads to the simplified design prob-
ability

P

"
P

Ê

Eeff
>

α

φg
eµln P

#
= pm (20)

Simulation Results

The Random Finite Element Method (RFEM) will be employed within a design
context to estimate settlement failure probabilities as a function of the resistance used
in the design. The approach is described as follows;
1) decide on a maximum tolerable settlement, δmax. To illustrate the approach we will

select δmax = 0.025 m.
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2) estimate the characteristic footing load, P̂ , to be the median load applied to the
footing by the supported structure (it is assumed that the load distribution is known
well enough to know its median, P̂ = eµln P ).

3) simulate an elastic modulus field, E(x∼ ), for the soil from a lognormal distribution
with specified mean, µE, coefficient of variation, vE, and correlation structure (e.g.
Eq. 1) with correlation length θln E.

4) ‘virtually’ sample the soil to obtain an estimate, Ê, of its elastic modulus. In a real
site investigation, the geotechnical engineer may estimate the soil’s elastic modulus
and depth to firm stratum by performing one or more CPT or SPT soundings. In
this simulation, one or more vertical columns of the soil model are selected to yield
the elastic modulus samples and Ê is set equal to their geometric average.

5) letting δp = δmax, and for given factors α and φg solve Eq. 19 for B. This constitutes
the footing design. Note that design widths are normally rounded up to the next
most easily measured dimension (eg 1684 mm would probably be rounded up to
1700 mm). In the same way, in this analysis the design value of B is rounded up to
the next larger element boundary, since the finite element model assumes footings
are a whole number of elements wide. (The finite element model uses elements
which are 0.15 m wide, so B is rounded up here to the next larger multiple of 0.15
m.)

6) simulate a lognormally distributed footing load, P , having median P̂ and variance
σ2

P .
7) compute the ‘actual’ settlement, δ, of a footing of width B under load P on a

random elastic modulus field using the finite element model. In this step, the
virtually sampled random field generated in step (3) above is mapped to the finite
element mesh, the footing of width B (suitably rounded up to a whole number
of elements wide) is placed on the surface and the settlement computed by finite
element analysis.

8) if δ > δmax, the footing design is assumed to have failed.
9) repeat from step (3) a large number of times (n = 1000, in this study), counting the

number of footings, nf , which experienced a design failure. The failure probability
is then estimated as p̂f = nf/n.

By repeating the entire process over a range of possible values of φg the resistance
factor which leads to an acceptable probability of failure, pf = pm, can be selected.
This ‘optimal’ resistance factor will also depend on;
1) the number and locations of sampled columns (analogous to the number and loca-

tions of CPT/SPT soundings),
2) the coefficient of variation of the soil’s elastic modulus, vE,
3) the correlation length, θln E,

The simulation will be repeated over a range of values of these parameters to see how
they affect φg.

Five different sampling schemes will be considered in this study, as illustrated
in Figure 6 (see Jaksa et al., 2005, for a detailed study of the effectiveness of site
investigations). The outer solid line denotes the edge of the soil model, and the interior
dashed line the location of the footing. The small black squares show the plan locations
where the site is virtually sampled. It is expected that the quality of the estimate of Eeff

will improve for higher numbered sampling schemes. That is, the probability of design
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failure will decrease for higher numbered sampling schemes, everything else being held
constant.

(1) (2) (3) (4) (5)

Figure 6. Sampling schemes considered in this study.

Figure 7 shows the effect of the correlation length on the probability of failure for
sampling scheme #1 (a single sampled column at the corner of site) and for vE = 0.5.
The other sampling schemes and values of vE displayed similarly shaped curves. Of
particular note in Figure 7 is the fact that the probability of failure reaches a maximum
for an intermediate correlation length, in this case when θln E ' 10 m. This is as
expected, since for stationary random fields the values of Ê and Eeff will coincide
for both vanishingly small correlation lengths (where local averaging results in both
becoming equal to the median) and for very large correlation lengths (where Ê and
Eeff become perfectly correlated) and so the largest differences between Ê and Eeff

will occur at intermediate correlation lengths. The true maximum could lie somewhere
between θln E = 1 m and θln E = 100 m in this particular study. This is a ‘worst case’
correlation length.
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Figure 7. Effect of correlation length, θln E, on probability of settlement
failure, pf = P [δ > δmax].
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Where the worst case correlation length occurs for arbitrary sampling patterns is still
unknown. However, the authors expect that it is probably safe to say that taking
θln E approximately equal to the average distance between sample locations and the
footing center (but not less than the footing size) will yield suitably conservative failure
probabilities. In the remainder of this study, the θln E = 10 m results will be concentrated
on since these yielded the most conservative designs.

Figure 8 shows how the estimated probability of failure varies with resistance
factor for the five sampling schemes considered with vE = 0.5 and θln E = 10 m.
This Figure can be used for design by drawing a horizontal line across at the target
probability, pm – to illustrate this, a light line has been drawn across at pm = 0.05 –
and then reading off the required resistance factor for a given sampling scheme. For
example, if pm = 0.05, then φg ' 0.46 for the worst case sampling scheme #1.

As expected, improved sampling (i.e. improved site understanding) makes
a significant difference to the required value of φg, which ranges from φg ' 0.46 for
sampling scheme #1 to φg ' 0.65 for sampling scheme #5, assuming a target probability
of pm = 0.05. The implications of Figure 8 are that when soil variability is significant,
considerable design/construction savings can be achieved when the sampling scheme
and site understanding are improved.
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Figure 8. Effect of resistance factor, φg, on probability of failure, pf =
P [δ > δmax] for vE = 0.5 and θln E = 10 m.
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SHALLOW FOUNDATION BEARING CAPACITY

The design of a shallow footing typically begins with a site investigation aimed
at determining the strength of the founding soil or rock. Once this information has been
gathered, the geotechnical engineer is in a position to determine the footing dimensions
required to avoid entering various limit states. In so doing, it will be assumed here that
the geotechnical engineer is in close communication with the structural engineer(s) and
is aware of the loads that the footings are being designed to support. The limit states
that are usually considered in the footing design are serviceability limit states (typically
deformation – see previous section) and ultimate limit states. The latter is concerned
with safety and includes the load-carrying capacity, or bearing capacity, of the footing.

This section investigates an LRFD approach for shallow foundations designed
against bearing capacity failure. Only a few results are presented – the interested reader
is directed to Fenton et al. (2008) or Fenton and Griffiths (2008) for more details.

The design goal is to determine the footing dimensions such that the ultimate
geotechnical resistance based on characteristic soil properties, R̂u, satisfies

φgR̂u � I
X

i

αiL̂i (21)

where φg is the geotechnical resistance factor, I is an importance factor, αi is the
ith load factor, and L̂i is the ith characteristic load effect. The relationship between
φg and the probability that the designed footing will experience a bearing capacity
failure will be summarized below (from Fenton et al., 2007) followed by some results
on resistance factors required to achieve certain target maximum acceptable failure
probabilities for the particular case of a strip footing (from Fenton et al., 2008). The
symbol φ is commonly used to denoted the resistance factor – see, for example, the
National Building Code of Canada (NBCC) [National Research Council (NRC), 2005]
and in Commentary K “Foundations” of the User’s Guide – NBC 2005 Structural
Commentaries, NRC, 2006). The authors are also adopting the common notation where
the subscript denotes the material that the resistance factor governs. For example, where
φc and φs are resistance factors governing concrete and steel, the letter g in φg will be
taken to denote “geotechnical” or “ground.”

The importance factor in Eq. 21, I , reflects the severity of the failure conse-
quences and may be larger than 1.0 for important structures, such as hospitals, whose
failure consequences are severe and whose target probabilities of failure are much less
than for typical structures. Typical structures usually are designed using I = 1, which
will be assumed in this section. Structures with low failure consequences (minimal risk
of loss of life, injury, and/or economic impact) may have I < 1.

Only one load combination will be considered in this section, αLL̂L + αDL̂D,
where L̂L is the characteristic live load, L̂D is the characteristic dead load, and αL and
αD are the live and dead load factors, respectively. The load factors will be as specified
by the National Building Code of Canada (NBCC, 2006); αL = 1.5 and αD = 1.25.
The theory presented here, however, is easily extended to other load combinations and
factors, so long as their (possibly time-dependent) distributions are known.
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The characteristic loads will be assumed to be defined in terms of the means of
the load components in the following fashion,

L̂L = kLe
µLe

(22a)
L̂D = kDµD (22b)

where µLe
and µD are the means of the live and dead loads, respectively, and kLe

and
kD are live and dead load bias factors, respectively. The bias factors provide some
degree of ‘comfort’ by increasing the loads from the mean value to a value having a
lesser chance of being exceeded. Since live loads are time varying, the value of µLe

is more specifically defined as the mean of the maximum live load experienced over a
structure’s lifetime (the subscript e denotes extreme).

For typical multistory office buildings, Allen (1975) estimates µLe
to be 1.7

kN/m2, based on a 30 year lifetime. The corresponding characteristic live load given
by the National Building Code of Canada (NBCC, 2006) is L̂L = 2.4 kN/m2, which
implies that kLe

= 2.4/1.7 = 1.41. Dead load, on the other hand, is largely static, and
the time span considered (e.g. lifetime) has little effect on its distribution. Becker
(1996) estimates kD to be 1.18.

The characteristic ultimate geotechnical resistance R̂u is determined using char-
acteristic soil properties, in this case characteristic values of the soil’s cohesion, c,
and friction angle, φ (note that although the primes are omitted from these quantities
it should be recognized that the theoretical developments described in this study are
applicable to either total or effective strength parameters). To obtain the characteristic
soil properties, the soil is assumed to be sampled over a single column somewhere in
the vicinity of the footing, for example, a single CPT or SPT sounding near the footing.
It is assumed here that the observations are error-free, which is an unconservative as-
sumption. If the actual observations have considerable error, then the resistance factor
used in the design should be reduced.

The characteristic value of the cohesion, ĉ, is defined here as the median of
the sampled observations, co

i , which, assuming c is lognormally distributed, can be
computed as a geometric average. The characteristic value of the friction angle is
computed as an arithmetic average.

To determine the characteristic ultimate geotechnical resistance R̂u, it will first
be assumed that the soil is weightless. This simplifies the calculation of the ultimate
bearing stress qu to

qu = cNc (23)

The assumption of weightlessness is conservative since the soil weight contributes to
the overall bearing capacity. This assumption also allows the analysis to explicitly
concentrate on the role of cNc on ultimate bearing capacity, since this is the only term
that includes the effects of spatial variability relating to both shear strength parameters
c and φ.

Bearing capacity predictions, involving specification of the Nc factor in this
case, are generally based on plasticity theories (see, e.g., Prandtl, 1921; Terzaghi, 1943;
and Sokolovski, 1965) in which a rigid base is punched into a softer material. These
theories assume that the soil underlying the footing has properties which are spatially
constant (everywhere the same). This type of ideal soil will be referred to as a uniform
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soil henceforth. Under this assumption, most bearing capacity theories (e.g., Prandtl,
1921; Meyerhof, 1951, 1963) assume that the failure slip surface takes on a logarithmic
spiral shape to give

Nc =
eπ tan φ tan2

�
π
4 + φ

2

�� 1
tan φ

(24)

The theory is derived for the general case of a c� φ soil. One can always set φ = 0 to
obtain results for an undrained clayey soil.

Consistent with the theoretical results presented by Fenton et al. (2008), this
section will concentrate on the design of a strip footing. In this case, the characteristic
ultimate geotechnical resistance R̂u becomes

R̂u = Bq̂u (25)

where B is the footing width and R̂u has units of load per unit length out-of-plane,
that is, in the direction of the strip foot. The characteristic ultimate bearing stress q̂u is
defined by

q̂u = ĉN̂c (26)

where the characteristic Nc factor is determined using the characteristic friction angle
in Eq. 24.

For the strip footing and just the dead and live load combination, the LRFD
equation becomes

φgBq̂u = I
�
αLL̂L + αDL̂D

�
=) B =

I
�
αLL̂L + αDL̂D

�
φg q̂u

(27)

To determine the resistance factor φg required to achieve a certain acceptable
reliability of the constructed footing, it is necessary to estimate the probability of bearing
capacity failure of a footing designed using Eq. 27. Once the probability of failure pf

for a certain design using a specific value for φg is known, this probability can be
compared to the maximum acceptable failure probability pm. If pf exceeds pm, then
the resistance factor must be reduced and the footing redesigned. Similarly, if pf is less
than pm, then the design is overconservative and the value of φg can be increased. A
specific relationship between pm and φg will be given below. Design curves will also be
presented from which the value of φg required to achieve a maximum acceptable failure
probability can be determined.

As suggested, the determination of the required resistance factor φg involves
deciding on a maximum acceptable failure probability pm. The choice of pm derives
from a consideration of acceptable risk and directly influences the size of φg. Different
levels of pm may be considered to reflect the “importance” of the supported structure –
pm may be much smaller for a hospital than for a storage warehouse. The choice of a
maximum failure probability pm should consider the margin of safety implicit in current
foundation designs and the levels of reliability for geotechnical design as reported in the
literature. The values of pm for foundation designs are nearly the same or somewhat less
than those for concrete and steel structures because of the difficulties and high expense
of foundation repairs. Typical maximum acceptable failure probabilities of foundations
range from 10−2 to 10−4 (Meyerhof, 1970). In general, these probabilities are deemed
by the authors to be appropriate for designs involving low to high failure consequence
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structures, with medium, or typical, failure consequence structures falling in the middle
at about 10−3.

We also note that the effect of structural importance is also typically reflected
in the importance factor, I , of Eq. 21 and not in the resistance factor. The resistance
factor should be aimed at a medium, or common, structural importance level and the
importance factor should be varied above and below 1.0 to account for more and less
important structures, respectively. However, since acceptable failure probabilities may
not be simply connected to structural importance, we will assume I = 1 in the following.
For code provisions, the factors recommended here should be considered to be the ratio
φg/I

Random Soil Model

The soil cohesion c is assumed to be lognormally distributed with mean µc,
standard deviation σc, and spatial correlation length θln c. A lognormally distributed
random field is obtained from a normally distributed random field Gln c(x∼ ) having zero
mean, unit variance, and spatial correlation length θln c through the transformation

c(x∼ ) = expfµln c + σln cGln c(x∼ )g (28)

where x∼ is the spatial position at which c is desired, σ2
ln c = ln

�
1 + v2

c

�
, µln c = ln (µc)�

σ2
ln c/2, and vc = σc/µc is the coefficient of variation.

The correlation coefficient between the log-cohesion at a point x∼ 1 and a second
point x∼ 2 is specified by a correlation function ρln c(τ∼) where τ∼ = x∼ 1 � x∼ 2 is the vector
between the two points. In this section, a simple exponentially decaying (Markovian)
correlation function will be assumed (see Eq. 1).

The friction angle φ is assumed to be bounded both above and below, so that
neither normal nor lognormal distributions are appropriate. A beta distribution is often
used for bounded random variables. Unfortunately, a beta-distributed random field
has a very complex joint distribution and simulation is cumbersome and numerically
difficult. To keep things simple, a bounded distribution is selected which resembles
a beta distribution but which arises as a simple transformation of a standard normal
random field Gφ(x∼ ) according to

φ(x∼ ) = φmin + 1
2(φmax � φmin)

�
1 + tanh

�
sGφ(x∼ )

2π

��
(29)

where φmin and φmax are the minimum and maximum friction angles in radians, re-
spectively, and s is a scale factor which governs the friction angle variability between
its two bounds. See Fenton and Griffiths (2008) more details about this distribution.

It seems reasonable to assume that if the spatial correlation structure of a soil is
caused by changes in the constitutive nature of the soil over space, then both cohesion and
friction angle would have similar correlation lengths. Thus, both cohesion and friction
angle are assumed to have the same correlation structure. The two random fields, c and
φ, are assumed to be independent which is deemed to be slightly conservative.

Nonzero correlations between c and φ were found by Fenton and Griffiths (2003)
to have only a minor influence on the estimated probabilities of bearing capacity failure.
Since the general consensus is that c and φ are negatively correlated (Cherubini, 2000;
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Wolff, 1985) and the mean bearing capacity for independent c and φ was slightly
lower than for the negatively correlated case (see Section 11.1), the assumption of
independence between c and φ is slightly conservative.

Failure Probability

When soil properties are spatially variable, as they are in reality, then the
hypothesis made in this study is that Eq. 23 can be replaced by

qu = c̄N̄c (30)

where c̄ and N̄c are the equivalent cohesion and equivalent Nc factor, defined as those
uniform soil parameters which lead to the same bearing capacity as observed in the real,
spatially varying, soil. In other words, it is proposed that equivalent soil properties, c̄
and φ̄, exist such that a uniform soil having these properties will have the same bearing
capacity as the actual spatially variable soil. The value of N̄c is obtained by using the
equivalent friction angle φ̄ in Eq. 24.
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Figure 9. Averaging regions and distances used to predict probability of
bearing capacity failure.

The design footing width B is obtained using Eq. 27, which, in terms of the characteristic
design values, becomes

B =
I
�
αLL̂L + αDL̂D

�
φg ĉN̂c

(31)

The design philosophy proceeds as follows: Find the required footing width B
such that the probability that the actual load L exceeds the actual resistance quB is less
than some small acceptable failure probability pm. If pf is the actual failure probability,
then

pf = P [L > quB] = P
�
L > c̄N̄cB

�
(32)
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and a successful design methodology will have pf � pm. Substituting Eq. 31 into Eq. 32
and collecting random terms to the left of the inequality leads to

pf = P

"
L

ĉN̂c

c̄N̄c

>
I
�
αLL̂L + αDL̂D

�
φg

#
(33)

The footing shown in Figure 9 is just one possible realization since the footing
width, B, is actually a random variable which depends on the results of the site investi-
gation. In order to estimate failure probability analytically, the random c and φ fields are
averaged over the domain D under the footing, where D is selected to approximately
represent the volume of soil which deforms during a bearing capacity failure.

Figure 10 illustrates the best and worst agreement between failure probabilities
estimated via simulation and those computed theoretically (Fenton et al., 2008). The
failure probabilities are slightly underestimated at the worst-case correlation lengths
when the sample location is not directly below the footing. Given all the approximations
made in the theory, the agreement is very good (within a 10% relative error), allowing
the resistance factors to be computed with confidence even at probability levels which
the simulation cannot estimate – the simulation involved only 2000 realizations and so
cannot properly resolve probabilities much less than 0.001.
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Figure 10. Comparison of simulation and theoretical (using Eq. 33) esti-
mates of failure probabilities at two sampling distances.

Required Resistance Factor

Equation 32 can be inverted to find a relationship between the acceptable proba-
bility of failure pf = pm and the resistance factor φg required to achieve that acceptable
failure probability,

φg =
I
�
αLL̂L + αDL̂D

�
exp fµln Y + σln Y βg (34)

where Y = LĉN̂c/(c̄N̄c) and β is the desired reliability index corresponding to pm.
Figure 11 shows the resistance factors required for the cases where the soil

is sampled at a distance of 4.5 m from the footing centerline for a target maximum
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acceptable failure probability of pm = 10−3. The worst-case correlation length is
clearly between about 1 and 5 m, which is of the same magnitude as the mean footing
width.
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Figure 11. Resistance factors required to achieve acceptable failure proba-
bility pm = 10−3 when soil is sampled at r = 4.5 m from footing
centerline.

As expected the smallest resistance factors correspond to the worst case correlation
lengths and the highest soil variability. In other words, there will be a significant
construction cost penalty if a high reliability footing is designed using a site investigation
which is insufficient to reduce the residual variability to less than vc = 0.5.

One of the main impediments to the practical use of these results is that they
depend on a-priori knowledge of the variance, and, to a lesser extent since worst-case
results are presented above, the correlation structure of the soil properties. However,
assuming that at least one CPT sounding (or equivalent) is taken in the vicinity of the
footing, it is probably reasonable to assume that the residual variability is reduced to
a coefficient of variation of no more than about 0.3, and often considerably less (the
results collected by other investigators, e.g. Phoon et al., 1999, suggest that this may be
the case for “typical” site investigations). If this is so, the resistance factors suggested
for vc = 0.3 are probably reasonable for the load and bias factors assumed in this study.

A significant advantage to formally relating the resistance factor to site under-
standing, such as shown in Figure 11, is that this provides geotechnical engineers with
evidence that increased site investigation will lead to reduced construction costs and/or
increased reliability. In other words, Figure 11 is further evidence that you pay for a
site investigation whether you have one or not (Institution of Civil Engineers, 1991).
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DEEP FOUNDATIONS

The resistance, or bearing capacity, of a pile arises as a combination of side
friction, where load is transmitted to the soil through friction along the sides of the pile,
and end bearing, where load is transmitted to the soil (or rock) through the tip of the
pile. As load is applied to the pile, the pile settles – the total settlement of the pile is
due to both deformation of the pile itself and deformation of the surrounding soil and
supporting stratum. The surrounding soil is, at least initially, assumed to be perfectly
bonded to the pile shaft through friction and/or adhesion so that any displacement of the
pile corresponds to an equivalent local displacement of the soil (the soil deformation
reduces further away from the pile). In turn, the elastic nature of the soil means that this
displacement is resisted by a force which is proportional to the soil’s elastic modulus
and the magnitude of the displacement. Thus, at least initially, the support imparted
by the soil to the pile depends on the elastic properties of the surrounding soil. For
example, Vesic (1977) states that the fraction of pile settlement due to deformation of
the soil, δs, is a constant (dependent on Poisson’s ratio and pile geometry) times Q/Es,
where Q is the applied load and Es is the (effective) soil elastic modulus.

As the load on the pile is increased, the bond between the soil and the pile surface
will at some point break down and the pile will both slip through the surrounding soil
and plastically fail the soil under the pile tip. At this point, the ultimate bearing capacity
of the pile has been reached. The force required to reach the point at which the pile slips
through a sandy soil is conveniently captured using a soil-pile interface friction angle,
δ. The frictional resistance per unit area of the pile surface, f , can then be expressed as

f = σ′n tan δ (35)

where σ′n is the effective stress exerted by the soil normal to the pile surface. In many
cases, σ′n = Kσ′o, where K is the earth pressure coefficient and σ′o is the effective
vertical stress at the depth under consideration. The total ultimate resistance supplied
by the soil to an applied pile load is the sum of the end bearing capacity (which can
be estimated using the usual bearing capacity equation) and the integral of f over the
embedded surface of the pile. For clays with zero friction angle, Vijayvergiya and Focht
(1972) suggest that the average of f , denoted with an overbar, can be expressed in the
form

f̄ = λ
�
σ̄′o + 2cu

�
(36)

where σ̄′o is the average effective vertical stress over the entire embedment length, cu

is the undrained cohesion, and λ is a correction factor dependent on pile embedment
length.

The limit state design of a pile involves checking the design at both the service-
ability limit state (SLS) and the ultimate limit state (ULS). The serviceability limit state
is a limitation on pile settlement, which in effect involves computing the load beyond
which settlements become intolerable. Pile settlement involves consideration of the
elastic behaviour of the pile and the elastic (e.g. Es) and consolidation behaviour of the
surrounding soil.

The ultimate limit state involves computing the ultimate load that the pile can
carry just prior to failure. Failure is assumed to occur when the pile slips through the
soil (we are not considering structural failure of the pile itself) which can be estimated
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with the aid of Eq’s 35 or 36, along with the end bearing capacity equation. The ultimate
pile capacity is a function of the soil’s cohesion and friction angle parameters.

In this section, the soil’s influence on the pile will be represented by bi-linear
springs (see, e.g., Program 12 of Smith and Griffiths, 1982), as illustrated in Figure
12. The initial sloped portion of the load-displacement curve corresponds to the elastic
(Es) soil behaviour, while the plateau corresponds to the ultimate shear strength of the
pile-soil interface which is a function of the soil’s friction angle and cohesion. The
next section discusses the finite element and random field models used to represent
the pile and supporting soil in more detail. In the following section an analysis of the
random behaviour of a pile is described and presented. Only the effects of the spatial
variability of the soil are investigated, and not, for instance, those due to construction
and placement variability. Finally, the results are evaluated and recommendations are
made.

δ

ultimate strength

stiffness

1

F

Figure 12. Bi-linear load (F ) vs. displacement (δ) curve for soil springs.

The Random Finite Element Model

The pile itself is divided into a series of elements, as illustrated in Figure 13.
Each element has cross-sectional area, A, (assumed constant) and elastic modulus, Ep,
which can vary randomly along the pile. The stiffness assigned to the ith element is the
geometric average of the product AEp over the element domain.

As indicated in Figure 12, the ith soil spring is characterized by two parameters;
its initial stiffness, Si, and its ultimate strength, Ui. The determination of these two
parameters from the soil’s elastic modulus, friction angle, and cohesion properties is
discussed conceptually as follows;
1) The initial spring stiffness, Si, is a function of the soil’s spatially variable elastic

modulus, Es. Since the strain induced in the surrounding soil due to displacement
of the pile is complex, not least because the strain decreases non-linearly with
distance from the pile, the effective elastic modulus of the soil as seen by the pile
at any point along the pile is currently unknown. The nature of the relationship
between Es and Si remains a topic for further research. In this chapter, the spring
stiffness contribution per unit length of the pile, S(z), will be simulated directly as
a lognormally distributed one-dimensional random process.

2) The ultimate strength of each spring is somewhat more easily specified, so long
as the pile-soil interface adhesion, friction angle, and normal stress are known.
Assuming that soil properties vary only with depth, z, the ultimate strength per unit
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pile length at depth z, will have the general form (in the event that both adhesion
and friction act simultaneously)

U (z) = p
h
αcu(z) + σ′n(z) tan δ(z)

i
(37)

where αcu(z) is the adhesion at depth z (see, e.g., Das, 2000, pg. 519, for estimates
of the adhesion factor, α), p is the pile perimeter length, σ′n(z) is the normal
effective soil stress at depth z, and δ(z) is the interface friction angle at depth z.
The normal stress is often taken as Kσ′o, where K is an earth pressure coefficient.
Rather than simulate cu and tan δ and introduce the empirical and uncertain factors
α and K, both of which could also be spatially variable, the ultimate strength
per unit length, U (z), will be simulated directly as a lognormally distributed one-
dimensional random process.

The random finite element model (RFEM) thus consists of a sequence of pile
elements joined by nodes, a sequence of spring elements attached to the nodes (see
Figure 13), and three independent 1-D random processes described as follows;� S(z) and U (z) are the spring stiffness and strength contributions from the soil per

unit length along the pile, and� Ep(z) is the elastic modulus of the pile.
It is assumed that the elastic modulus of the pile is a 1-D stationary lognormally

distributed random process characterized by the mean pile stiffness, µAEp
, standard

deviation, σAEp
, and correlation length θln Ep

, where A is the pile cross-sectional area.
Note that for simplicity, it is assumed that all three random processes have the same
correlation lengths and all have the same correlation function (Markovian). While it
may make sense for the correlation lengths associated with S(z) and U (z) to be similar,
there is no reason that the correlation length of Ep(z) should be the same as that in
the soil. Keeping them the same merely simplifies the study, while still allowing the
study to assess whether a “worst case” correlation length exists for the deep foundation
problem.

To assess the probabilistic behaviour of deep foundations, a series of Monte
Carlo simulations, with 2000 realizations each, were performed and the distribution
of the serviceability limit state loads were estimated. The serviceability limit state
was defined as being a settlement of δmax = 25 mm. Because the maximum tolerable
settlement cannot easily be expressed in dimensionless form, the entire analysis will be
performed for a particular case study; namely a pile of length 10 m is divided into n = 30
elements with µAEp

= 1000 kN, σAEp
= 100 kN, µS = 100 kN/m/m, and µU = 10 kN/m.

The base of the pile is assumed to rest on a slightly firmer stratum, so the base spring
has mean stiffness 200 kN/m and mean strength 20 kN (note that this is in addition to
the soil contribution arising from the lowermost half-element). Coefficients of variation
of spring stiffness and strength, vS and vU , taken to be equal and collectively referred
to as v, ranged from 0.1 to 0.5. Correlation lengths, θln S, θln Ep

, and θln U , all taken to
be equal and referred to collectively simply as θ, ranged from 0.1 m to 100.0 m. The
spring stiffness and strength parameters were assumed to be mutually independent, as
well as being independent of the pile elastic modulus.
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Figure 13. Finite element representation of the pile-soil system.

Figure 14 shows one of the best (on the left) and worst (on the right) fits of a lognormal
distribution to the serviceability pile load histogram with chi-square goodness-of-fit p-
values of 0.84 and 0.0006, respectively (the null hypothesis being that the serviceability
load follows a lognormal distribution). The right-hand plot would result in the lognormal
hypothesis being rejected for any significance level in excess of 0.06%. Nevertheless, a
visual inspection of the plot suggests that the lognormal distribution is quite reasonable
– in fact it is hard to see why one fit is so much ‘better’ than the other. It is well known,
however, that when the number of simulations is large, goodness-of-fit tests tend to be
very sensitive to small discrepancies in the fit, particularly in the tails.

In the case of the ultimate limit state, the pile capacity problem becomes much
simpler – the ultimate capacity is just the sum of the ultimate spring strengths along
the pile. What this means in practice is that the ultimate pile capacity is just the sum
of ultimate shear forces provided by the supporting soil to the pile perimeter. In the
case of an undrained soil, the ultimate resistance of a pile of length H (ignoring end-
bearing) due to cohesion, c, between the pile surface and and its surrounding soil can
be computed according to,

Ru =
Z H

0
pαc(z) dz (38)
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where p is the effective perimeter length of the pile section, c(z) is the soil cohesion at
depth z (locally averaged around the pile perimeter), and α is the ratio of the ultimate
cohesion acting on the pile surface and the soil cohesion, which is typically somewhere
between 0.5 and 1.0 (CFEM, 2006).
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Figure 14. Estimated and fitted lognormal distributions of serviceability
limit state loads, Q for a) v = 0.2 and θ = 1 m (p-value = 0.84)
and b) v = 0.5 and θ = 1.0 m (p-value = 0.00065).

A pile design involves finding the effective pile perimeter, p, and the pile length, H ,
required to resist the applied load at an acceptable reliability. If it can be assumed that
the pile type is already known, then the problem reduces to finding the required pile
length, which involves finding H so that the LRFD equation,

φgR̂u � I
X

i

αiL̂i (39)

is satisfied. Naghibi and Fenton (2009) developed an analytical model which predicts
the probability of ultimate limit state failure of a pile,

pf = P

"
L

ĉ

c̄
>

I
�
αLL̂L + αDL̂D

�
φg

#
(40)

and this analytical model is compared in Figure 15 to simulation results. The agreement
between the two models is excellent.

The analytical failure probability model can be inverted to determine resistance
factors required for the ULS design of piles in an LRFD framework. The resistance
factors, φg, required in Eq. 39 to achieve four maximum acceptable failure probability
levels (10−2, 10−3, 10−4 and 10−5) at moderate level of site understanding (r = 4.5 m)
are shown in Figure 16. Again, a worst case correlation length is clearly evident at
about the distance between the pile and the sample location.
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Figure 16. Resistance factors for the ULS design of deep foundations for
various maximum acceptable failure probabilities, pm.
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SLOPE STABILITY

Slope stability analysis is a branch of geotechnical engineering that is highly
amenable to probabilistic treatment, and has received considerable attention in the
literature. The earliest papers appeared in the 1970s (e.g. Matsuo and Kuroda 1974,
Alonso 1976, Tang et al. 1976, Vanmarcke 1977) and have continued steadily (e.g.
D’Andrea and Sangrey 1982, Li and Lumb 1987, Mostyn and Li 1993, Chowdhury and
Tang 1987, Whitman 2000, Wolff 1996, Lacasse 1994, Christian et al. 1994, Christian
1996, Lacasse and Nadim 1996, Hassan and Wolff 2000, Duncan 2000, Szynakiewicz
et al. 2002, El-Ramly et al. 2002, and Griffiths and Fenton 2004, Griffiths et al. 2006
and 2007).

Two main observations can be made in relation to the existing body of work on
this subject. First, the vast majority of probabilistic slope stability analyses, while using
novel and sometimes quite sophisticated probabilistic methodologies, continue to use
classical slope stability analysis techniques (e.g. Bishop 1955) that have changed little
in decades, and were never intended for use with highly variable soil shear strength
distributions. An obvious deficiency of the traditional slope stability approaches, is that
the shape of the failure surface (e.g. circular) is often fixed by the method, thus the
failure mechanism is not allowed to “seek out” the most critical path through the soil.
Second, while the importance of spatial correlation and local averaging of statistical
geotechnical properties has long been recognized by many investigators (e.g. Mostyn
and Soo 1992), it is still regularly omitted from many probabilistic slope stability
analyses.

In recent years, the authors have been pursuing a more rigorous method of
probabilistic geotechnical analysis (e.g. Fenton and Griffiths 1993, Griffiths and Fen-
ton 1993, Paice 1997, Griffiths and Fenton 2000), in which nonlinear finite element
methods (Program 6.3 from Smith and Griffiths, 2004) are combined with random field
generation techniques. The resulting RFEM is a powerful slope stability analysis tool
that does not require a priori assumptions relating to the shape or location of the failure
mechanism. This section applies the Random Finite Element Method to slope stability
risk assessment.

β

H

Input Parameters

φu=0,  γsat

µcu, σcu, θlncu
DH

2

1

D=2
β=26.6o

Figure 17. Cohesive slope test problem.

The slope under consideration in this study is shown in Figure 17, and consists of
undrained clay, with shear strength parameters φu = 0 and cu. In this study, the slope
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inclination and dimensions, given by β, H and D, and the saturated unit weight of the
soil, γsat are held constant, while the undrained shear strength cu is assumed to be a
random variable. In the interests of generality, the undrained shear strength will be
expressed in dimensionless form c, where c = cu/(γsatH).

The shear strength c is assumed to be characterized statistically by a lognormal
distribution defined by a mean, µc, and a standard deviation σc. A third parameter, the
spatial correlation length θln c will also be considered here in a non-dimensional form
obtained by dividing it by the height of the embankment H ,

Θ = θln c/H (41)

In the elasto-plastic RFEM approach, the failure mechanism is free to “seek
out” the weakest path through the soil. Figure 18 shows two typical random field
realizations and the associated failure mechanisms for slopes with Θ = 0.5 and Θ = 2.
The convoluted nature of the failure mechanisms, especially when Θ = 0.5, would defy
analysis by conventional slope stability analysis tools. While the mechanism is attracted
to the weaker zones within the slope, it will inevitably pass through elements assigned
many different strength values. This weakest path determination, and the strength
averaging that goes with it, occurs quite naturally in the finite element slope stability
method, and represents a very significant improvement over traditional limit equilibrium
approaches to probabilistic slope stability, in which local averaging, if included at all,
has to be computed over a failure mechanism that is pre-set by the particular analysis
method (e.g. a circular failure mechanism when using Bishop’s Method).

Θ = 0.5

Θ = 2.0

Figure 18. Typical random field realizations and deformed mesh at slope
failure for two different spatial correlation lengths. Light zones
are weaker.

Fixing the point mean strength at µc = 0.25, Figure 19 shows the effect of the coefficient
of variation of cohesion, vc, on the probability of failure for the test problem. Figure
19 also demonstrates that when Θ becomes large, corresponding approximately to a
single random variable approach with no local averaging, the probability of failure is
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overestimated (conservative) when the coefficient of variation is relatively small and
underestimated (unconservative) when the coefficient of variation is relatively high.
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Figure 19. Probability of failure versus coefficient of variation from the
random finite element method; the mean is fixed at µc = 0.25.

SUMMARY

Uncertainty is a fact of life in all walks of engineering, but particularly so in
geotechnical engineering. There is increasing pressure on the geotechnical community
to provide risk assessments in conjunction with their designs. This is particularly true
in the face of increasing urban and population pressures, climate change uncertainties,
and society’s decreasing risk tolerance. Thus, while engineering judgement remains
essential in any design process, it is becoming increasingly important to make use of
probabilistic tools to aid in the decision making process.

The Random Finite Element Method discussed above provides such a tool. Al-
though many other probabilistic methods exist, the integration of random field modeling
and the finite element method provides for reduced model error by more realistically
modeling the spatial variability of the ground and by allowing failure to occur naturally
where it ‘wants to’. In addition, the method is easily extended to the study of how
site sampling schemes affect as-built reliability, which leads to an improved ability to
develop reliability-based geotechnical design codes.
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The results presented above cover a variety of common geotechnical problems.
Common amongst the results presented is the following observation: In order to rea-
sonably accurately estimate the reliability of a geotechnical system, at least the mean
and variance must be known at a site. At most sites, only the mean (and perhaps mean
trend) will be known due to limited site investigation budgets. The residual variance (re-
maining after the mean trend has been determined) is generally obtained by judgement
and/or from the literature. In the authors’ opinions, the site investigation intensities
suggested by codes worldwide are probably sufficient to reduce residual coefficient
of variation levels to less than about 30%, excepting, perhaps permeability, so that
reasonable resistance factors can be used in the design process.

One of the main problems in determining the reliability of a geotechnical system
has to do with how to characterize the spatial variability of the ground. To properly
estimate the parameters of spatial variability (e.g. the correlation length) requires very
extensive site sampling. Fortunately, it appears that there is usually a ‘worst case’ spatial
variability level which can be used to provide conservative designs. It remains to be
seen if the economic losses in the construction of geotechnical systems based on this
‘worst case’ correlation length are greater or less than the losses due to the increased
investigation required to properly estimate the correlation length. Much work is required
to decide upon this issue. However, it appears to the authors that the reliability levels
based on the worst case correlation length agree with those adopted by most modern
geotechnical design codes, and so at this point, adopting these conservative estimates
appears reasonable.

Finally, the results presented above are still very generic, in that they describe the
‘average site’. Their value is in providing the geotechnical community with knowledge
about the basic probabilistic behaviour of geotechnical systems – in particular how spa-
tial variability affects failure probability. In the future, we need to focus on site specific
behaviour: Individual sites will generally not have isotropic correlation structures, will
often be layered, and may not be well represented by a single spatially variable random
field. While the methodology presented above is reasonably easily extended in concept
to the modeling of a specific site, the computer models to do so have not yet been fully
developed for all problems. Such advancements are in need of further work, but are
coming.
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