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ABSTRACT 
This paper investigates the probabilistic nature of differential settlement between 
two identical piles founded in a spatially variable linearly elastic soil. A theoretical 
model is developed, and validated by simulation, which is then used to calculate the probability of excessive differential 
settlement. The theoretical model can be employed in the design of individual piles to avoid excessive differential 
settlements. 
 
RÉSUMÉ 
Cet article étudie la nature probabiliste du tassement différentiel entre deux pieux identiques fondés dans un sol élastique 
linéaire spatialement variable. Un modèle théorique est développé et validé par simulation, et il peut être utilisé pour 
calculer la probabilité de tassements différentiels excessifs. Le modèle théorique peut être utilisé dans la conception de 
pieux individuels pour éviter un tassement différentiel excessif. 
 
 
1 INTRODUCTION 
 
Geotechnical foundations are often governed by 
serviceability limit states (SLS), relating to settlement, 
rather than by ultimate limit states (ULS), which relate to 
safety. Most modern geotechnical design codes state that 
the serviceability limit state can be avoided by designing 
each foundation to settle by no more than a specified 

maximum tolerable settlement, 
max . However, in the case 

of foundations, it is usually differential settlements which 
govern the serviceability of the supported structure. For 
example, if all of the foundations of a supported structure 
settle equally, but excessively, then the approaches to the 
structure will have to be modified, but the structure itself will 
not suffer from either a loss of serviceability nor from a loss 
of safety. 

With probability 1, individual foundations will not settle 
equally and the differential settlement between foundations 
can lead to loss of serviceability and even catastrophic 
ultimate limit state failure in the supported structure. So the 
question is, how should differential settlement between 
foundations be properly accounted for in the foundation 
design process? 

Although the settlement of deep foundation is not 
generally a concern if the piles are driven to refusal, 
settlement can become a design issue if no stiff substratum 
is encountered. As a result, this paper will concentrate 
attention on piles which are not end-bearing, that is on 
piles whose settlement resistance is derived from skin 
friction and/or adhesion with the surrounding soil. 

Design code provisions should be kept as simple as 
possible, while still achieving a target reliability with 
respect to both serviceability and ultimate limit states. This 
means that design codes should retain their maximum 
settlement requirements but the specified maximum 
settlement should be reviewed to reasonably ensure that 
differential settlements do not result in achieving either 

serviceability or ultimate limit states in the supported 
structure. 

This paper investigates how the maximum 
settlement specified in a design code for an individual 
foundation relates to the distribution of the differential 
settlement between two foundations, as a function of the 
ground statistics and the distance between the two 
foundations. Figure 1 illustrates the settlement of two piles 
founded in a spatially variable ground. The results of this 
paper can be used to propose design code requirements 
on maximum settlements for individual foundations which 
aim to achieve target reliabilities against excessive 
differential settlements between pairs of foundations. 

 
Figure 1. Slice through a random finite element method 
(RFEM) mesh of a ground supporting two piles. 
 
In this paper, the settlement of a pair of floating piles 
founded in a three-dimensional spatially random soil mass, 

each supporting a vertical load, TF , is studied using the 

finite random element method (RFEM, Fenton and 



Griffiths, 2008). 
A probabilistic model for differential settlement is 

presented, which is then validated via Monte Carlo 
simulation. The results can be used in design provisions for 
piles that avoid excessive differential  settlement. 

The paper is organized as follows: In Section 2, a finite 
element model is presented for a pair of floating piles 
founded in a three-dimensional spatially random soil mass, 
each supporting a vertical load. A theoretical approach to 
estimating the distribution of differential pile settlement is 
developed in Section 3, and the approach is validated via 
simulation in Section 4. Conclusions and proposed 
future work is presented in Section 5. 

 
 
2 FINITE ELEMENT MODEL 
 
The random settlement of a single pile, which was 
studied in depth by Naghibi et al. (2014b), is highly 
dependent on the random elastic modulus field of the 
surrounding soil, as well as on the pile geometry. In addition, 
when settlement of pile groups is of interest, mechanical 
interaction between the piles plays an important role in 
both total settlement and in differential settlement. 

Consider two neighboring piles of identical geometry, 

supporting loads 
1TF  and 

2TF  and separated by distance 

s , as depicted in Figure 2. For generality in developing the 

theory, the pile loads will be considered to be random and 
possibly correlated (although in the validation and the 
calibration of the mechanical interaction factor, it is 

assumed that 
1 2T T T TF F F    , i.e. non-random). If 1   

is the settlement of a vertically loaded individual pile without 

any neighboring piles, and 1  is the overall settlement of the 

pile due to its loading and due to settlement of a neighboring 

pile, 2 
 
, then  

 

1 1 2       [1] 

 
where   is the mechanical interaction factor between the 

two piles, which is a function of pile spacing and pile 
length. Rearranging Eq. [1] and solving for   gives 
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  [2] 

In order to predict   , predictions (or observations) of 1 , 

1  , and 2   are needed.  In this paper, these quantities will 

be found using a linear elastic finite element model of the 
soil (Smith et al., 2014) with deterministic elastic modulus 

field ( EE  everywhere, where E  is the elastic 

modulus, and E  is its mean). The piles are founded in 

a three-dimensional linear elastic soil mass modeled using 
a 50 by 30 by 30 finite element mesh, as illustrated in 
Figure 1. Eight-node brick elements are used with 
dimensions 0.3 m by 0.3 m in the x , y (plan) and by 0.5 

m in the z (vertical) directions. Within the mesh, piles are 

modeled as columns of elements having depth H , and 

hence have a square cross-section with dimension 

0.3d   m. 

 
Figure 2. Relative location of two piles 

 
The prediction of   is done for three pile lengths, 

2,4,H  and 8 m, with separation distance, /s d , ranging 

between 2 and 30, where s  is the center-to-center pile 

spacing and d  is the pile diameter. For a particular choice 

of pile length, H , pile spacing s , applied load, 2.16TF   

MN, pile to soil stiffness ratio / 700p sk E E  , soil elastic 

modulus 30E   MPa, three finite element (FE) analyses 

are performed; one with pile1 only, one with pile2 only, 
and one with both pile1 and pile2 separated by distance 

s .  The piles are placed at elements  50 / / 2s d  and 

 50 / / 2s d , numbered in the x  direction.  For 

example, pile1 only case involves the FE analysis of single 
pile settlement where pile1 is placed at element 

 50 / / 2s d
 
, while the two pile case involves the FE 

analysis of two neighboring piles, pile1 and pile2, placed at 

elements  50 / / 2s d
 
and  50 / / 2s d ,  respectively. 

Note that the mechanical interaction,  , depends on 

pile spacing, s , and pile length, H , and is independent of 

E  or TF . The dependence on Poisson’s ratio,  , is 

negligible. The piles are placed at least 10 elements away 
from the boundaries of the FE model, which leads to relative 
pile settlement error of less than 10% (Naghibi et al., 
2014a), so that the influence of boundary conditions on pile 
settlement is deemed to be negligible. 

The resulting sequence of finite element analyses 

provided predicted values of   for various /s d  and pile 

lengths, H , as shown in Figure 3. It is evident that   

increases with increasing pile length, H , and decreases 

with increasing /s d , as expected. For values of H other 

than those specified in Figure 3, 
 
is estimated using linear 

interpolation for 2 8H   and linear extrapolation when 

H  falls outside this range. 

 



 
Figure 3. Plot of interaction factor,  , using FE model for 

2.16TF   MN, 700k  , 0.3  , and 30E   MPa 

 
 
3 PROBABILISTIC SETTLEMENT MODEL 
 
Attention is now turned to a probabilistic model of pile 
settlement, where the soil is assumed to be a spatially 
variable random field. To estimate the pile settlement, it is 
first assumed that the soil surrounding the pile is perfectly 
bonded to the pile shaft through friction and/or adhesion. 
Any displacement of the pile is thus associated with an 
equivalent displacement of the adjacent soil. Following the 
classic work of authors such as Poulos and Davis (1980), 
Randolph and Wroth (1978) and Vesic (1977), the soil is 
assumed to be linearly elastic, so that this displacement is 
resisted by a force which is proportional to the soil’s elastic 
modulus and the magnitude of the displacement. Thus, the 
support provided by the soil to the pile depends on the 
elastic properties of the surrounding soil. 

To design a pile against entering the serviceability limit 
state, that is, against entering a failure state where the pile’s 
actual settlement exceeds a maximum tolerable 
settlement, a settlement prediction model is required. If the 
model is good, then it will provide a good estimate of the 
mean pile settlement and the in-situ actual pile settlement 
will be due to natural ’residual’ soil variability around the 
predicted mean. The settlement prediction model is used 
to determine the pile design such that the predicted mean 
settlement is some fixed fraction (specified by the load and 
resistance factors) of the maximum tolerable settlement. If 
the settlement prediction model is poor, then it also 
contributes to the variability in the prediction of the actual 
settlement. This source of variability will be referred to 
here collectively as the ’degree of site and prediction 
model understanding’, which includes (a) the degree of 
understanding of the ground properties and geotechnical 
properties throughout the site, and (b) the accuracy and 
degree of confidence about the numerical performance 
prediction model used to estimate the serviceability 
geotechnical resistances. 

It is assumed in this paper that a sufficiently accurate 
settlement prediction model is used for the pile design, so 
that model error itself is attributable only to errors in the soil 
parameters used in the model, that is, to the degree of site 
understanding. This is probably a reasonable assumption, 
since if the (possibly non-linear) properties of the soil 

through which the pile passes, along with the nature of the 
interface between the pile and the soil, are all well known, 
then models exist which can provide very good estimates 
of the mean pile settlement. This paper is not attempting 
to provide an improved settlement prediction model. In 
fact a decision about the degree of site and prediction 
model understanding used in the pile design process is left 
to the designer. This paper concentrates on the residual 
settlement variability (around the mean) after the design 
has been performed. It is assumed that this variability 
arises from the spatial variability of the soil itself, along 
with uncertainty in the soil property estimates used in the 
prediction model. 

It is recognized that pile settlement becomes non-
linear after about 2% of the pile diameter, and so the elastic 
modulus mean used in this simulation must be considered 
to be a secant modulus which approximates the curved 
nature of the actual pile load-settlement curve. However, 
the details of the mean settlement predictor used to design 
a pile and/or to estimate the distribution of differential pile 
settlement are not important to the subsequent probabilistic 
analysis (which is relative to the mean), and, of course, the 
reader is encouraged to use the best settlement prediction 
available to them. The linear model used in this paper is, 
however, the best currently available to predict the effects 
of spatial variability of the soil on the distributions of 
settlement and differential settlement. 

The spatially varying elastic modulus field, which is 
assumed here to have a constant Poisson’s ratio,  , may be 

characterized by an equivalent soil elastic modulus, 
gE . The 

equivalent elastic modulus is a spatially uniform value that 
yields the same settlement as the pile experiences in the 

actual spatially varying soil (Fenton and Griffiths, 2008). 
gE

will be assumed here to be the geometric average of the 

spatially varying elastic modulus field, E , as will be 
discussed shortly. The elastic modulus is assumed to be 

lognormally distributed with mean E  , standard deviation 

E  , and spatial correlation length,  ln E . The lognormal 

distribution is commonly used to represent non-negative soil 

properties and means that ln E  is normally distributed with 

parameters ln E  and ln E . The distribution parameters of 

ln E  can be obtained from the mean and standard 

deviation of E  using the following transformations 

2

ln ln
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ln

1
ln( )

2

ln(1 )

E E E

E Ev
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

 

 

  [3] 

where /E E Ev    is the coefficient of variation of  E . If 

the soil’s elastic modulus, E , is lognormally distributed, as 

assumed, then 
gE  will also be lognormally distributed 

since geometric averages preserve the lognormal 
distribution (Fenton and Griffiths, 2008). 

The correlation coefficient between the log elastic 
modulus at two points is defined by a correlation 

function, ln ( )E  , in which   is the distance between the 

two points. In this study, a simple isotropic exponentially 
decaying (Markovian) correlation function will be employed, 



having the form  

ln

ln

2 | |
( ) expE

E


 



 
  

 
  [4] 

where   is the distance between any two points in the field 

and ln E  is the correlation length (Fenton and Griffiths, 

2008). 
Since the soil is a spatially variable random field, the 

pile settlement will also be random. Assuming that the pile 
settlement is approximated lognormally distributed (as 
was shown to be reasonable by Naghibi et al., 2014b), then 
the task is to find the parameters of that distribution and the 
distribution of the resulting differential settlement. Assuming 

further that 
1  and 2  are the total settlements of the two 

piles shown in Figures 1 and 2, then 
1  and 2 are 

identically and lognormally distributed random variables. 
The differential settlement between two piles is 

defined here to be 1 2    .  If the elastic modulus field 

is statistically stationary, as assumed here, then the mean 

differential settlement,  , is zero. The mean absolute 

differential settlement can be approximated by (if   is 

approximately normally distributed)  

2
 




  [5] 

which indicates that the mean of the absolute differential 

settlement is directly related to the standard deviation of 
, and hence related to the variability of the elastic moduli 
surrounding the piles. The approximation in Eq. [5]  is exact 

if    is normally distributed (Papoulis, 1991), and, as will be 

shown shortly, this approximation is in reasonable 
agreement with simulation based results. 

Investigations by Fenton and Griffiths (2002) 
suggest that the equivalent elastic modulus as seen by 
a shallow foundation is a geometric average of the soil’s 
elastic modulus under the foundation. Naghibi et al.  
(2014b) similarly assumes that the equivalent elastic 

modulus, 
gE , as seen by a pile is a geometric average 

of the soil’s elastic modulus over some volume, 
fV , 

surrounding the pile 

2 0 0 0

1
exp ln ( )
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  [6] 

where ( ) ( , , )E x E x y z is the elastic modulus of the soil at 

spatial position (x, y, z).  The pile is centered on the volume 

fV B B C    where C is measured in the vertical (z) 

direction.  
The settlement of a single pile can then be expressed 

as 

det

iTE
i

g T

F

E


 



  
     

  

  [7] 

where the subscript i is either 1 or 2, and det is the 

deterministic settlement of a single pile obtained from a 
single finite element analysis of the problem using 

   
iT TF µ and    EE µ everywhere. Substituting Eq. [7] into 

Eq. [1] leads to pile settlements, 1  and 2 , as follows 
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The differential settlement, 
1 2     , between two piles 

becomes        
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The variance of ∆ is therefore 
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where 
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Now if /
i ii T gX F E , 1,2,i   and 

iTF  and 
igE  are 

lognormally distributed, then iX  is also lognormally 

distributed. In this case, ln ln ln
i ii T gX F E   is 

normally distributed with parameters (Naghibi et al., 
2014b) 
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assuming that 
iTF  and 

igE  are independent, and 

where 
f  is the variance reduction due to averaging ln E  

over the three-dimensional volume 
fV B B C    

surrounding the piles. In detail, 

ln 1 2 1 22 0 0

1
( )

f fV V

f E

f

x x dx dx
V

      [13] 

where 1x  and 2x are two spatial positions within 
fV . Note 

that 
f is essentially just the average correlation coefficient 

between all points within the volume 
fV . 

The distribution parameters of iX  can be obtained 

from the mean and standard deviation of ln iX  using the 



following transformations 
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Using Eq.’s [12] in Eq.’s [14] results in 
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 [15] 

where /E E Ev    is the coefficient of variation of the 

elastic modulus field, E . 

The covariance between the two lognormal random 

variables 
1 11 /T gX F E and 

2 22 /T gX F E can be 

computed as 
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where 
2

iX  
is given by Eq. [15], and the correlation 

coefficient, X ,  comes from the transformation (Fenton 

and Griffiths,  2008) 
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and 
2

ln iX  is defined by Eq. [12]. In addition 
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again assuming  TF  and 
gE  are independent. The 

correlation ln TF  is given by 

 
 

 2 2

ln 22
ln

ln 1 ln 1

ln 1

T T

T

T

F T F T

F

FT

v v

v

 




 
 


  [19] 

where 
TF is the correlation between loads 

1TF  and 
2TF . 

The term 
ff  is the average correlation coefficient between 

two log-elastic modulus fields of sizes 
fV B B C    

surrounding the two piles, which are separated by distance 

s  (see Figure 2 for s ). In detail, 
ff is given by 
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1
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where ln E  is given by Eq. [4]. 

Employing Eq’s. [12] and [18] in Eq. [17] leads to 
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and using Eq.[15] and [21] in Eq. [16] results in 
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Finally substituting Eq’s. [15] and [22] into Eq. [11] gives 
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from which the variance of differential settlement, 
2  , 

becomes  
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  [24] 

If 1
TF  , so that the loads 

1TF  and 
2TF  are the same, 

then the above equation simplifies to, 
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  [25] 

For s  ,  pile settlements 1  and 2  becomes 

independent, and hence both   and ff  in Eq. [25] become 

z ero. In this case, Eq. [25] reduces to 
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  [26] 

Assuming that the normal distribution is a reasonable 
approximate distribution of the differential settlement 
between two piles, then the probability that the differential 

settlement exceeds max  is 
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  [27] 

since 0  , and where    is calculated via Eq. [24].  The 

probability of failure, fp , can also be expressed in terms of 

the reliability index,  as shown in Eq. [27], where   is the 

standard normal cumulative distribution function. That is, 
the reliability index corresponding to a particular value of 

fp  can be obtained by inverting Eq. [27],
1( )fp   . 

 

 
4 VALIDATION OF THEORY VIA MONTE CARLO 

SIMULATION 
 

In this section, the predicted parameters of the distribution 

of differential settlement,  , are compared to Monte Carlo 

simulation results in order to assess the accuracy of the 
theory developed in the previous section. The particular 
case considered in this validation study is detailed in Table 
1. 

Realizations of differential settlement of two piles are 
obtained using the random finite element method (RFEM) 
(Fenton and Griffiths, 2008). 

Three load cases ( TF ) are considered for this analysis, 

as listed in Table 1 and it is assumed that the pile loads are 
equal and non-random. For each load case, a design pile 
length is determined as follows to achieve a target maximum 

settlement, max 0.025   m (Naghibi et al., 2014a) 
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  [28] 

Table 1. Input parameters used in the validation of theory 

Parameters Values Considered 

d  0.3 m 

pE  21 Gpa 

TF  1.46, 2.16, 3.16 MN 

E  30 Mpa 

Ev  0.1, 0.3, 0.5 

Poisson’s ratio,  0.3 

ln E  0.01, 0.1, 0.5, 1.0, 5.0, 10.0 m 

s  2d, 3d, 5d, 10d, 15d, 20d, 30d 

simn  2000 

B  2 m 

C  2H  

where gs  is the geotechnical resistance factor, accounting 

for uncertainty in geotechnical resistance. In this validation 

study, gs  is taken to be 1.0.  The pile to soil stiffness ratio 

is assumed to be 700k  , from which 0 0.029a   , 

1 2.44a  , 2 0.939a   are obtained using the regression 

developed by Naghibi et al. (2014a). The resulting design 
pile lengths are 2,4,H  and 8 m for the three load cases 

1.46,2.16,TF   and 3.16 MN respectively. 

The mechanical interaction factor,  , is obtained for 

each pile length (load case) and each pile spacing, s , 

listed in Table 2, using Figure 3. 

The soil volume surrounding the pile, fV B B C   , 

for use in the geometric average given by Eq. [6], was 
selected by trial and error (see Naghibi et al., 2014b) and 
the (approximately) best averaging volume was found to 

occur when 2B   m, and 2C H . These choices led to 

the best agreement between theory and simulation with 
respect to settlement exceedance probabilities for a single 
pile.  

Figures 4 and 5 illustrate the comparison between the 

theory and simulation-based estimates of    and   . The 

theoretical estimates were obtained using Eq’s. [5] and 

[24] for 1
TF   (identical loads), and 0Tv   (non-random 

load). Figure 4 demonstrates that the theory 

underestimates    when    is small. Although not seen 

in the figure, the underestimation occurs most strongly for 

longer piles and smaller values of Ev  and ln E .  

 
Figure 4. Predicted, obtained via Eq. [5], versus simulated 

mean absolute differential settlement,   , for all cases 

listed in Table 1 
 
The discrepancies between simulation and theory seen in 
Figures 4 and 5 arise mainly due to approximations made in 

the theory. For instance, the theory assumes that   is 
normally distributed – this is not a good assumption 

when     is small, which is where the errors become more 

pronounced. Note that the errors are actually quite small in 
absolute value and thus of not great importance. For 

example, when the simulated 


 is less than 0.5 mm, the 



predicted 


 is often less than about 0.1 mm. In either 

case, the differential settlement is negligible. 
 

 
Figure 5. Predicted, obtained via Eq. [24], versus simulated 

standard deviation differential settlement,   , for all cases 

listed in Table 1 
 
The probability that the differential settlement exceeds 

max , as predicted by Eq. [27], is compared to simulation in 

Figure 6 for three possible maximum acceptable differential 
settlement to pile spacing ratio values, 

max / 1/ 200,1/ 500,s   and 1/1000. These 

serviceability gradient limitations are as specified in the 
Canadian Foundation Engineering Manual (CFEM) 
(Canadian Geotechnical Society, 2006). 

It is evident from Figure 6 that the theory sometimes 

significantly underestimates maxP       ., which is 

unconservative.  Although not shown in Figure 6, the 
disagreement is worst for smaller pile spacings, s . 

 
Figure 6. Predicted, via Eq. [27], versus simulated 

maxP        for all cases listed in Table 1 

It  is  believed  that the  discrepancy  between  theory  
and  simulation in Figure 6 is  due  to  the  covariance 
between the piles being essentially overestimated in the 
theory by including both a statistical covariance component 

(
ff ) at the same time as a mechanical interaction term (

 ). The overestimation in the ‘equivalent’ covariance 

between the piles reduces the theoretically predicted mean 
differential settlement, as seen in Figure 4, and thus 
significantly reduces the theoretical probability of excessive 
settlement, as seen in Figure 6. This discrepancy can be 
largely solved by introducing an empirical correction to the 
theory, which was found by trial-and-error. If the value of   

is replaced by 0.5  for short piles (e.g., 3H   m), by 0 

for medium length piles (e.g., 3 6H   m), and by 0.5  

for longer piles (e.g., 6H   m), then the agreement 

between theoretical and simulated exceedance 
probabilities is significantly improved, as shown in Figure 7. 

 

 
Figure 7. Predicted, obtained via Eq. [27], versus simulated  

maxP     , corrected by replacing   with 0.5  for  

3H   m, with zero for 3 6H   m, and with 0.5  for  

6H   m. 

 
What this empirical correction is essentially doing is 
reducing the covariance between the piles – the amount of 
covariance reduction is greatest for shorter piles, where 
most of the errors were seen, since the statistical 
covariance portion is relatively higher for shorter piles. The 
application of an empirical correction raises the question as 
to why the statistical covariance isn’t reduced simply by 

reducing the volume fV B B C   , rather than by 

reducing the mechanical component? The reason is that 

the choice in fV  led to a good prediction of the distribution 

of the settlement of an individual pile, and so it was felt that 
its size was an appropriate measure of the zone around the 
pile influencing the total settlement. The problem really is 
that the mechanical interaction factor was determined from 
a deterministic (non-random elastic modulus field). The 



actual mechanical interaction factor in a spatially random 
elastic modulus field is unknown and not easy to specify 
probabilistically. Preliminary results using trials having 
identical random field realizations indicate that the random 
mechanical interaction factor is always lower than the 
deterministic mechanical interaction factor. However, it 
was felt that the determination of the distribution of the 
actual   was beyond the scope of this paper, and perhaps 

not worth the effort, since the empirical correction 
suggested above seems to work so well. 

With this empirical correction, the agreement between 
theory and simulation is considered very good. Thus, the 
theory is believed to be reliable enough to assist in design 
recommendations (to be published by authors shortly). In 
other words, the normal distribution, along with an 
empirically corrected standard deviation, can be used as a 
reasonable approximation to the distribution of the 
differential settlement between two piles. 
 
 
5 CONCLUSIONS 
 
The differential settlement between two piles is studied and 
a theoretical model with an empirical correction is 
developed, which is then validated by simulation. The 
theoretical model can be used to estimate the probability of 
excessive differential settlement and hence to provide 
design recommendations. The relationship between the 
target maximum settlement recommended in design codes 
and the distribution of the differential settlement between 
two piles was investigated.  

The differential settlement model presented here is 
a function of the load and the ground stiffness 
distributions, along with the distance, correlation coefficient 
(in both loads and ground parameters), and mechanical 
interaction between the piles. The local averages used 
around the piles gave very good agreement between 
predicted and simulated exceedance probabilities for total 
settlement in the study by Naghibi et al. (2014b). However, 
using the same local averages in this paper 
overemphasized the correlation between piles. To 
compensate, an empirical adjustment factor was 
introduced. The resulting probabilistic model is quite 
general and the agreement between the model and 
differential settlement simulation results was deemed to be 
very good (see Figure 7). 

Note that this study is based on variability in the 

ground and not on variability in the loads. That is, 0Tv   

was used in the validation of theory via simulation and the 
loads applied to the two piles were assumed equal. The 
actual joint load distribution is dependent on the stiffness of 
the supported structure, amongst other things, and the 
stiffness of the supported structure also influences the 
maximum allowable differential settlement. To properly 
model the joint load distribution, and the maximum 
tolerable differential settlement, a model of the supported 
structure would be required, which was beyond the scope 
of this paper. The assumptions made here essentially 
correspond to that of a very stiff supported structure (e.g., 
a pile cap). If the structure is actually quite flexible, one 
would expect increased differential settlement, but at the 
same time one would expect additional tolerance for 

differential movement. It is felt that the results presented 
here are basically applicable regardless of the structural 
model. Nevertheless, research is ongoing into the effect 
that structural stiffness and load transfer mechanisms have 
on the SLS design of individual foundations against 
excessive differential movement. 
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