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ABSTRACT: The study investigates the role of spatially random soil on the stability 
of infinite slopes with application to landslides and other geohazards. The influence 
of the shear strength mean, standard deviation and spatial correlation length on the 
probability of failure is thoroughly investigated through parametric studies. The 
results show that the traditional “first order second moment” approach to this problem 
is inherently unconservative, due to its inability to allow the failure mechanism to 
“seek out” the critical depth below ground surface, which is frequently not at the base 
of the soil layer.  
 
 
INTRODUCTION 
 
   One of the main objectives of this work was to create a powerful general framework 
for modeling statistically described parameters relating to long slopes. The method 
involves a combination of Random Field theory (e.g. Fenton and Vanmarcke, 1990) 
with infinite slope theory (e.g. Taylor, 1948; Lambe and Whitman, 1969; Bromhead 
1992; Duncan, 1996).  The method, applied in a Monte-Carlo framework, takes into 
account the mean, standard deviation and spatial correlation length of the input 
parameter. Repeated calculations using the same input statistics of soil parameters 
(e.g. undrained shear strength) eventually lead to stable output statistics of the design 
parameters (e.g. Factor of Safety). The paper then compares results from the Monte-
Carlo analyses with those obtained using the first order second moment method 
(FOSM). 
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ANALYTICAL METHOD 
 
   The analytical method considers a slice of soil in the potential failure zone as shown 
in Figure 1. The slope is homogeneous with a ground water free surface and critical 
failure surface running parallel to the slope surface.  The analytical solution includes 
the option of different heights of the ground water surface through the slope as well 
as a horizontal pseudo-acceleration.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 1: Representation of forces acting on the infinite slope 
 
   Based on the key principles of infinite slope theory the factor of safety FS can be 
calculated as  
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   Assuming γm = γsat we can obtain a simplified form of Eq. 2: 
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 The following symbols are used in the analytical solution of this problem: 
 
c'  soil cohesion 
dw  depth of the water table 
E′   Young’s modulus 
FS  factor of safety  
H  depth of the soil layer 
kh         horizontal pseudo acceleration coefficient 
L  width of slice 
Nd  normal force component  
Td  shear force component 
u  pore pressure 
W  weight of slice 
 
   For variable soil strength profiles the classical infinite slope equation for 
homogeneous frictionless soil, 

cos sin
uc

FS
Hγ β β

=    

should be written as: 
1

cos sin
uc

FS
z γ β β

=  

noting that the critical failure surface occurs at a depth where uc

z
 is a minimum.   

   In the random field approach, the input undrained shear strength is defined by its 
mean (

ucμ ), standard deviation (
ucσ ) and correlation length ( θ ). The spatial 

correlation length recognizes that soil samples “close” together are more likely to 
have similar properties than if they are “far apart”.  A visual example of a case of low 
and high correlation lengths is given in Figure 2. 
   In the results presented later in the paper, the spatial correlation length θ is 
expressed as a dimensionless parameter with respect to the soil depth as follows 
 

H

θ
=Θ  

 
   The issue of how many Monte-Carlo simulations are needed is addressed in Figure 
3 for the case of 0.2Θ =  and 0.1

ucV = , where 
ucV is the coefficient of variation of the 

undrained shear strength. The probability of failure represents the proportion of 
Monte-Carlo realizations for which 1FS ≤ . Five thousands simulations appear to 
give stable results.  
 

(4) 

(5) 

β  slope inclination 
γsat  saturated unit weight 
γw  unit weight of water 
γm        unit weight of material 
σ  normal total stress 

'σ   normal effective stress 

dτ   developed shear stress 

fτ  shear strength 

 υ  Poisson’s ratio 
φ′  soil friction angle 
 

(6) 
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FIG.2: The grayscale represents varying shear strength values, with the light 
sections showing low strength areas. Both images represent a slope with same 
mean and standard deviation 
 

 
 

FIG. 3: Number of realizations vs. probability of failure.  
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FIRST ORDER SECOND MOMENT METHOD (FOSM) 
 
   The FOSM method for a single random variable is easily applied. For example, 
from Eq. 4 we get  
 

 
1

sin cos uFS cH
μ μ

γ β β
=  (7) 

and 
 

 
1

sin cos uFS cH
σ σ

γ β β
=  (8) 

 
   It should be noted however that since no spatial variability is accounted for in this 
method (the soil is assumed to be variable but homogeneous) the failure mechanism 
is always assumed to act at a depth H . 
   Consider the particular case where 32.5 m, 30 ,  20 kN/mH β γ= = ° =  with 

2 225 kN/m  and 5 kN/m   ( 0.2)
u u uc c cVμ σ= = =  

From equations (7) and (8), FOSM gives 1.155 and 0.231  ( 0.2)FS FS FSVμ σ= = =  

If we assume a lognormal distribution of FS , then the mean and standard deviation 
of the underlying normal distribution of ln FS are given by 

 { }2
ln

1
ln ln 1 0.124

2FS FS FSVμ μ= − + =  (9) 

  

 { }2
ln ln 1 0.198FS FSVσ = + =  (10) 

  
   To estimate the probability of failure, we need to estimate the probability that 1FS < , 
or in log-space, that ln 0FS <  
 
This is given by 

 

[ ]

[ ] [ ]

ln

ln

ln1
1

0.124
0.626 1 0.626

0.198

0.265

FS

FS

P FS
μ

σ
⎡ ⎤−

< = Φ ⎢ ⎥
⎣ ⎦
⎡ ⎤= Φ − = Φ − = −Φ⎢ ⎥⎣ ⎦

=

 (11) 

A similar procedure with an input 0.4
ucV =  led to [ ]1 0.428P FS < = .  

 
If the distribution of FS  is assumed to be normal in the above examples, FOSM 
gives [ ]1 0.251P FS < =  and [ ]1 0.369P FS < =  for  input of 0.2

ucV =  and 0.4
ucV =  

respectively. 
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RANDOM FIELD STUDIES WITH MONTE-CARLO  
 
   Numerous parametric studies have been performed, but in the interests of brevity 
only two of them are summarized in this paper. An undrained clay slope with 

2.5 m, H = 30 ,β = ° 3 2 20 kN/m ,  and 25 kN/m
ucγ μ= =  was considered with two 

different standard deviations of 25 kN/m
ucσ =  and 210 kN/m

ucσ = corresponding to 

coefficients of variation of 0.2 and 0.4.
ucV =  

  
In both cases the dimensionless correlation length was varied in the range 0.1 4< Θ < . 
This study used 5000 Monte-Carlo simulations which was sufficient to give 
statistically reproducible results for all the parametric combinations considered. The 
proportion that gave 1FS <  was calculated as the probability of failure fp .   

 
Figure 4 illustrates a typical histogram of FS values for 0.2

ucV =  and 0.1Θ =  

generated by the Monte-Carlo simulations, together with both normal and lognormal 
fitted functions. The curve fits were based on the statistics of the factor of safety 
coming out of the Monte-Carlo analysis, which for this case were 0.92FSμ =  and 

0.11FSσ =  
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FIG.4: FS distribution from Monte-Carlo compared with normal and lognormal 
functions ( Θ

ucV=0.2, =0.1) 

 
   Figure 5 and 6 gives plots of fp  vs. Θ  from the Monte-Carlo simulations. The 

horizontal line in each case gives the probability of failure predicted by FOSM 
leading to 0.264fp =  for 0.2

ucV =  as computed earlier, and 0.433fp =  for 0.4
ucV =  
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FIG. 5: Probability of failure vs. Spatial correlation length for 

ucV=0.2 
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FIG. 6: Probability of failure vs. Spatial correlation length for 

ucV=0.4 

 
   Clearly, FOSM is unconservative and is shown to be a special case of the random 
field results as Θ→∞ . The key reason for this is that the random field approach 
allows the slope to fail at its weakest point, while the FOSM method, being based on 
a classical formula, assumes the failure mechanism is at the base of the column which 
is not necessarily critical. Although not presented in this paper, similar conclusions 
are reached if uc  and FS  are assumed to be normally distributed.  
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CONCLUSIONS 
 
A novel analytical solution based on random properties has been developed and 
validated for the analysis of “infinite slopes” with the ability to model many different 
parametric variations. The classical analytical solution from infinite slope theory has 
been combined with random field theory to perform probabilistic infinite slope 
analyses in a Monte-Carlo framework. The method was compared with results 
obtained using the First Order Second Moment (FOSM) method. The FOSM lead in 
all cases to unconservative results because it is locked into the assumption that failure 
must occur at the base of the column. The random field approach has the key 
advantage that it “seeks out” the critical mechanism and is therefore a proper model 
of a spatially random soil. This phenomenon is also present in more conventional 
probabilistic studies of finite slope stability problems. Methodologies that resort to 
classical slope stability methodologies that do not allow the failure mechanism to 
“seek out” the most critical path are almost inevitably going to lead to unconservative 
results. 
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