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Finite element modelling of rapid drawdown
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ABSTRACT:
soil slopes are discussed.

Aspects of finite element modelling of rapid-drawdown phenomena in
The analyses involve finding the position of the

steady-state phreatic surface through an earth dam, followed by sudden

unloading due to reduction in water level on the upstream face.

The analyses

are performed in plane-strain using 8-noded quadrilateral elements, and it is
shown that in the undrained analyses, oscillations in the computed pore
pressures are considerably reduced by a form of selective reduced

integration.

It is found that the residual pore pressure distribution after

the drawdown is not uniform with higher pore pressure concentration near the

toe.

1. Itroduction

A list of failures of earth dams between
1936-61 attributed to conditions set up
during drawdown has been documented by
Morgenstern (1963). Sudden drawdown leads
not only to possible stability problems on
the upstream slopes of earth dams, but may
also induce slides in the natural slopes
of the reservoir area. In addition,
Koppejan et al(1948) suspected that the
drawdown mechanism during tidal recession
was one of the causes of coastal flow
slides. Jones et al (1961) also recorded
that landslides on the banks of the
Franklin D. Roosevelt lake were more
numerous after a lowering of the level of
water impounded behind the Grand Coulee
Dam.

The mechanism of drawdown may be
considered in stages. First the pore
pressure distribution in an earth dam
prior to lowering of the reservoir level
is governed by the steady seepage
condition where the soil has consolidated
under its own self weight. Following
this, the lowering of the water level
causes changes in the pore pressure as a
result of the unloading during drawdown
establishing new boundary conditions for
seepage through the dam. During this
transient phase, the free-surface
gradually adjusts to a new equilibrium

position by dissipating the excess pore
pressures. As a result, the effective

stresses increase with time as does the
factor of safety of the upstream slope.

In fill materials of 'low'
permeability, a significant amount of time
is required for equilibriumn to be reached
after drawdown. The most critical time
however, occurs immediately after drawdown
hence an "undrained' assumption is
conservative. The 'rapid drawdown'
mechanism can therefore be reviewed as a
consolidated (steady seepage) - undrained
(rapid drawdown).

2, Analyses of Drawdown

Early attempts to analyse embankment
stability during drawdown were carried out
by Mayer (1936). An assumed failure plane
in conjunction with the Method of slices
led to a resultant shear force which
implied failure if it was greater than the
shear resistance of the soil, TIowe (1960)
proposed a slip circle again in
conjunction with the Method of slices.
This more refined approach obtained an
undrained shear strength (C,) accounting
for the anisotropically consolidated soil
such as that occuring in elements of soil
under high reservoir level prior to
drawdown. Morgenstern (1963) recognised
that the change in loading due to drawdown
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will induce immediate changes in pore
pressure prior to consclidation., This
concept is congistent with Skempton (1954)
who first established the well-known
equations in which changes in pore
pressure under undrained conditions are
related to changes in total stresses via
the pore pressure parameters A and B.
Using this approach, Morgenstern used slip
circle methods to produce a set of
stability charts for upstream slopes with
various inclination and shear strength
parameters (C',¢')(Morgenstern1963)-

Very few finite element analyses of
the rapid drawdown problem have been
reported, Desai (1977) and 1i (1983)
proposed a finite element procedure for
seepage and stability of earth dams during
transient flow where pore pressures begin
to dissipate following drawdown. I these
analyses, the effects of the fluid and
solid phases were not coupled, but
superimposed during the analyses. In the
present work, the authors present a more
rigorous approach in which coupling
between the phases is considered. The
analysis can be considered in two parts; a
steady state solution followed by
undrained unloading.

3. Method of Analysis

3.1 Steady Seepage

Initially, a finite element procedure is
derived to locate the position of the free
surface prior to drawdown., There are two
basic methods for doing this; the mesh
adaptive methods e.g. Taylor and Brown
(1967), Finn (1967), Witherspoon and
Neuman (1970), Smith and Griffiths (1987)
and the fixed mesh methods e.g. Desai
(1976), Bathe (1979). The fixed mesh
approach has been used in the present
study for the following reasons:

(i) The same mesh can be used for both
the seepage and stress analyses.

(ii) The mesh adaptive methods can run
into difficulties in the case of layered
soils with horizontal interfaces and for
soils involving non-homogeneous
permeabilities. It is also difficult to
assign appropriate material properties
when the free surface crosses on
interface. (Li 1983).

(iii) The mesh may become so distorted
that the error due to the finite element
approximation becomes significant,

§_.(k Ei) 42 (k
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3.2 Slope Stability

Gravity loads are applied to the slope and
constant stiffness iterations (modified
Newton-Raphson) are used to obtain a
converged solution. The viscoplastic
iterative technique is described elsewhere
(e.g Zienkiewicz 1977, Grifiths 1980).

In the present analyses, after
location of the steady state seepage line,
the steady residual pore pressure is
applied as nodal water force vector
together with the gravity loading due to
soil self weight and the upstream force
corresponding to the water level prior to
drawdown. This generates the consolidated
stresses corresponding to the steady state
condition. These stresses then act as the
intial stress state prior to rapid
(undrained) drawdown unloading.

4. The Fixed Mesh Method

Consider 2-D steady seepage through a dam
as shown in Figure 1.
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Figure 1: Boundary Conditions

For no sources or sinks within the system,
the governing equation is due to Laplace
of the form:

Eﬁg =0 1
iy (1)
where ¢ = potential, kx’ k=
permeabilities in x and y directions. The
boundary conditions from Figure 1 can be
summarised as follows:
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Boundary conditions S1, $2, S3 can be
easily satisfied in the finite element
formulation (e.g. Smith and Griffiths
1987). n the free surface, the location
of 54 is unknown 'a priori' and condition
85 depends on S4. The method used is to
set the permeability to zero, or in
practice a very small number, when the
computed pressure becomes negative (i.e.
above the free surface) during each
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jteration (Bathe 1979, Wernmer 1986). A
smoothing technique proposed by Werner
(1986) is also used to avoid undesirable
oscillation which occurs when a sudden
change in permeability is encountered
(Figure 2).
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Figure 2: Permeability-Pressure Relationship

The length of the seepage surface S5 is
estimated on each iteration by minimising
the net outflow given by the expression

3 9 ] 9
o (ky a%) + 55 U gf;) (3)

5, Simplified Biot formulation for 2-D
undrained Analysis

Assuming for the moment an elastic soil
skeleton and an incompressible pore fluid

we get the following equilibrium equation:

3o'x , dTXY , 3u _ ¢
X 3y X X ()
§o'y . 31Xy L 8u _ p {53
ay ERS ay y

where u = excess pore pressure, Fx' Fy =
body forces.

With reference to the pore fluid, Darcy's
law and continuity conditions can be
summarised thus:

3 3 3 3 3

AR R O OR RCHEE )
(Where plane strain conditions are
implied). For saturated undrained
conditions, no volume change takes place
hence only the stress equilbrium equation
is required which can be written as:
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Relatlgg stress to strains we get:
a' D T
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where DY = stress strain matrix of the
pore fluid

effective stress strain matrix
of the soil skeleton

=]
i

For undrained conditions, there is no
relative movement between the pore water
and soil skeleton, hence:

u

=L (8)

|™

In addition, we assume that the pore
pressures contribute only to direct
stresses (and not at all te shear
stresses) hence:

o 1 1 0
] 1 1 0 ‘ 9)
0 0 0

where K, is the apparent Bulk Modulus of
the pore fluid, usually assigned a large,
but finite value (Griffiths 1985). The
analysis now amounts to a 'penalty'
formulation in which the total Poisson's
ratio of the soil/fluid system approaches
0.5.

We can now write a simplified version of
the Biot formulation for an undrained

analysis. From equations (6) and (7).
Boraph et (10)
or

B De _F (11)
where b. —’ o 22

represents the total stress/strain matrix.

A similar formulation was first obtained
by Maylor (1974). Although this method
can be used to estimate pore pressures
from equation (7), it has been found that
the values obtained at the Gauss points
tend to oscillate., A technique for
smoothing these oscillations is now
described.

6. An Integration Technique for the Pore
Pressure Smoothing

For nearly incompressible material such as
saturated soils during undrained loading,
'reduced' integration is commonly used in
conjunction with 8-node elements to avoid
the troublesome volumetric portion of the
strain energy and to overcome 'mesh
locking' (e.g. Fried 1974, Zienkiewicz
1977). Reduced integration relaxes the
number of constraints imposed by
satisfying the incompressibility condition
only at the Causs points. As a result,
the overall performance of the element may
be improved, but errors are introduced
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into the volumetric strain energy by
relaxing the 'zero' volume change
condition throughout the element,
Although these errors may be small in
magnitude, they may become significant as
pore pressures after multiplication by a
'large' fluid bulk modulus.

In the present work, it is proposed that
exact integration is used to obtain the
total strain energy, but stresses will
still be sampled at the 'reduced'
integration point locations. The reduced
integration points for stresses will
continue to be used because:

1) Computation time is reduced when
using constant stiffness iterations in
which the global stiffness matrix is
formed once only, -
(ii) The reduced integration points are
the best positions for assembling stresses
for either reduced or exact integrations
schemes as observed by Zienkiewicz (1977).

The integration technique described above
will be confirmed by numerical examples in
the next section. It can be shown that
the particular application described in
this paper does not suffer from 'mesh
locking’ when using exact integration.

Discussions
st nss Sl

Examples of the proposed fixed mesh me thod
using 8-node quadrilateral elements with
‘reduced’ (2 x 2) integration are
presented in Fig. 3 and 4. The free
surface solutions are observed to converge
rapidly in all the cases and agree very
well with other published solutions. With
the given unit permeabilities in x-
and y- directions, the calculated flow
rate for the vertical homogeneous dam in
fig 3 is 4.59 compares favourably with the
result 4.55 from Ligget (1977). For the
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Figure 3: Compare Free Surface with published solution
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Figure 4: FEM Free Surface solution for & sloped embankmeat

example with horizontal toe drain, the
point at which the impervious boundary
along the bottom of the dam meets the
drain will create a discontinuity in the
boundary conditions. This problem can be
avoided by representing the boundary
meeting point with two nodes, one
connected to the element above the
impervious boundary with the other, with
zero prescribed pressure, connected to the
element above the drain.

In stress analysis for slope stability
during rapid drawdown, the element is
assumed to be elastic-perfectly plastic
with the Mohr-Coulomb failure criterion.
Mon-linearity introduced by the plasticity
is accounted for using the viscoplastic
method. Mn-dilatant soil behaviour is
assumed and non-associated flow rule is
used. The f§ctor of safety (FO0S) is
defined as C¢ = C'/F0s, ¢§ = Arc tan (tan
$' /FOS). An example of a fully submerged
slope under complete drawdown is used to
study the effect of the magnitude of KA
(Fig. 5). It shows that the FOS remains
unchanged throughout the range of

KA = 25 E' to 1000E', towever, the pore
pressure response due to the drawdown
unloading suffers severe oscillations.
The magnitude of these oscillations
increases with increasing KA (Fig. 6).
This is thought to be due to the errors
involved in the volumetrie strain (Asv).
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Figure 5: Effect of K4 on F.0.5. : Compare with published results
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Figure 6: Effect of K 4 on pore pressure response at failure at y = 8.9.
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Since the pore-pressure is AU = KA. Ae_ ,
increasing KA will magnify the error in
the pore pressure and hence the
oscillations., The error in the volumetric
strains is a consequence of 'relaxing' the
element using 'reduced' integration, and
can be reduced if exact integration is
used., This is confirmed in Fig. 7.
Comparing the F0S of the fully submerged
slope under complete rapid drawdown with
published results, the coupled FEM
solution (F0S = .67) underestimates that
from Morgenstern (F0S = .82) by about 18%
(Fig., 5). The 'dry' solution however,
agrees exactly with that by Bishop and
Morgenstern (1960). A close examination
of the residual pore pressure distribution
after complete drawdown of the coupled
solution shows a non—uniform distribution
with higher value concentrated near the
toe areas (Fig. 8). The pore pressures
obtained in the present work correspond to
an elastic, perfectly plastic (non-
dilative) soil model. Morgenstern (1963)
assumed a uniform residual pore pressure
distribution given by y_.h (Fig., 8) and
this simplified approacg leads to an
overestimation of the factor of safety.

In very loose materials during undrained
shear, the pore pressures would be greater

still, leading to even lower factors of
safety. Fig. 9 shows the results of the
coupled analysis for upstream failure due
to different amounts of drawdown. Both a
single slope and a double sided embankment
have been considered and the results agree
well with Morgenstern (1963).

Conclusions

The paper has discussed coupled FEM and
fixed mesh methods for rapid drawdown
analysis. It has been shown that the
residual pore pressure distribution after
the drawdown is not uniform with pore
pressure tending to the highest near the
toe. This led to the Factors of Safety
lower than those obtained using
traditional methods. The oscillations in
the pore pressure response due to using
'reduced integration' can be greatly
improved by using exact integration to
form the global stiffness matrix,
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Figure 9: Compare rapid drawdown
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