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ABSTRACT:  Probabilistic analysis of failure problems in geomechanics is often 

directed towards assessing the mean and variance of design quantities (e.g. Factor of 

Safety, bearing capacity, limiting earth pressure) as a function of the mean and 

variance of input quantities (e.g. shear strength parameters).  When spatial correlation 

length is also included as an input parameter, an additional complexity is introduced 

in that this parameter directly impacts the locally averaged shear strength along a 

failure surface.  A key advantage of the Random Finite Element Method (RFEM) 

over conventional methods is that no a priori assumptions are made about the shape 

or location of the critical failure mechanism.  The RFEM enables the mechanism to 

“seek out” the critical route leading to the minimum factor of safety.  By forcing the 

mechanism to be circular (say), traditional approaches are inevitably “upper bound” 

and can lead to unconservative conclusions regarding slope failure risk. 

INTRODUCTION 

  The majority of probabilistic slope stability analyses continue to use classical slope 

stability analysis techniques (e.g., Bishop 1955).  The deficiency of traditional slope 

stability approaches is that the shape of the failure surface is often fixed by the 

method and the failure mechanism is not allowed to “seek out” the most critical path 

through the soil.  Second, spatial correlation and local averaging of statistical 

geotechnical properties has typically been omitted from many probabilistic slope 

stability analyses.   

  More recently, spatial correlation has been included in probabilistic slope stability 

analysis by modeling the soil parameters as 1D random fields (e.g., El-Ramly et al. 

2002).  In this approach, the critical failure surface over which the 1D random fields 

are assumed is typically determined using a traditional slope stability method using 

locally averaged soil properties.  The influence of the local averaging depends on the 

spatial correlation length and the correlation function as will be discussed later.  The 

results of this analysis can be sensitive to the choice of failure surface (e.g., circular) 



and may lead to an overestimation of the factor of safety and hence underestimate the 

probability of failure (e.g. Duncan et al. 2003). 

  To avoid having to select the appropriate shape of the failure surface, the elasto-

plastic finite element (FE) slope stability approach can be applied.  This approach, 

known in the academic community for years (Smith and Hobbs 1974, Zienkiewicz et 

al. 1975), has the key advantage that the analysis allows the soil mass to “fail where it 

wants to fail”.  It is not necessary to anticipate the shape or location of the critical 

failure surface a priori since this information comes out of the analysis automatically. 

To create an even more powerful tool, the FE approach has been joined with random 

field theory to provide a rigorous probabilistic approach for modeling the influence of 

statistically described soil properties on design outcomes in geotechnical engineering. 

The marriage of random field theory and FE analysis, called the “random finite-

element method” (RFEM), takes full account of local averaging, variance reduction, 

and spatial correlation without the disadvantage of anticipating a potential failure 

surface (Griffiths and Fenton 1993 and see www.engmath.dal.ca/rfem/rfem.html for a 

full list of RFEM publications). 

  To demonstrate the benefits of RFEM the probabilistic stability characteristics of a 

cohesive slope will be investigated using both a simplified slope stability analysis and 

RFEM. 

  The slope under consideration is shown in Figure 1, and consists of undrained clay, 

with shear strength parameters u=0 and cu.  This is the same test slope considered by 

Griffiths and Fenton 2004.  In this study, the slope inclination and dimensions, give 

by , H, and D, and the saturated unit weight of the soil, sat, are held constant, while 

the undrained shear strength cu is assumed to be a random variable.  The undrained 

shear strength is conveniently expressed in the dimensionless form C, where 

C=cu/(satH). 

 

 
Fig. 1.  Cohesive slope 

 

PROBABILISTIC DESCRIPTION OF SHEAR STRENGTH 

  The shear strength, C, is assumed to be characterized statistically by a log-normal 

distribution defined by a mean, C, and a standard deviation, C.  The mean and 

standard deviation can be expressed in terms of the dimensionless coefficient of 

variation, defined as 
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The third parameter considered is the spatial correlation length, ln C.  The spatial 

correlation length (ln C) describes the distance over which the spatially random 

values will tend to be significantly correlated.  Thus, a large value of ln C will imply 

a smoothly varying field, while a small value will imply a rough field.  In this study, 

the spatial correlation length has been normalized by the slope height and will be 

expressed in the form, 
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  It has been suggested (see, e.g., Lee et al. 1983; Phoon & Kulhawy 1999) that 

typical VC values for undrained shear strength are in the range of 0.1-0.5.  The spatial 

correlation length is less well documented and may exhibit anisotropy.  Although the 

capability of modeling an anisotropic soil is available, the spatial correlation 

considered in this study will be assumed to be isotropic. 

DETERMINISTIC STUDY 

  An initial deterministic study assuming a homogeneous soil has been performed to 

put the probabilistic analyses into context.  For the simple slope shown in Figure 1, 

the factor of safety was obtained using simple equilibrium methods to give the data in 

Table 1.  From Figure 2, a linear relationship exists between the factor of safety, FS, 

and the shear strength, C, which leads to Equation (3). 

 

FS 5.88C  (3) 

   

Table 1. Factors of Safety Assuming Homogenous Soil 

C Factor of Safety (FS) 

0.15 0.88 

0.17 1.00 

0.20 1.18 

0.25 1.47 

0.30 1.77 
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Fig. 2.  Linear relationship between factor of safety and C for a cohesive 

slope with slope angle =26.57º and a depth ratio of D=2 

SIMPLE APPROACH 

  The analysis presented here investigates the influence of giving the shear strength C 

a log-normal probability density function based on a mean, a standard deviation and 

spatial correlation length.  A locally averaged value of C based on 1D averaging over 

an arc length as shown in Figure 3 will be used in Equation 3. 

 
 

Fig. 3.  Assumed failure surface with example failure surface divisions 

 

  To account for local averaging and spatial correlation, the failure circle will be 

divided into equal arc lengths and the soil properties averaged along each arc.  The 

variance reduction factor due to local averaging, , is defined as  
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where the subscript A refers to the locally averaged statistic over an arc length.  The 

variance reduction factor is a function of the slice length and the correlation function.  



The correlation function used is an exponentially decaying (Markovian) correlation 

function of the following form 
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where S is the arc length for local averaging. 

  For a line of lengthSln C it can be shown (Vanmarcke 1984) that the variance 

reduction factor is given by 
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Performing the integration leads to the variance reduction values plotted in Figure 4.  

Figure 4 illustrates that arc length impacts variance reduction.  For line lengths that 

are small with respect to correlation length, there is little reduction in variance, 

whereas line lengths that are large relative to correlation length can result in 

significant reduction. 

 

 
Fig. 4.  Variance reduction function over a line of length ln C with a 

Markov correlation function 

   

  The underlying statistics including local averaging are given by 
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Which leads to the following statistics including local averaging. 
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  For the problem considered, the surface is divided into equal slices.  The locally 

averaged statistics will therefore be the same for each slice and Equation (3) can be 

used with the locally averaged statistics to determine the probability of failure of the 

slope, which is defined as the probability that the factor of safety will be less than 1.0.   

  The influence of the number of subdivisions on the locally averaged statistics is 

illustrated in Figure 5.  A large number of slices indicate that the line length is small 

with respect to the spatial correlation length and the locally averaged statistics closely 

resemble the input point statistics.  Conversely, for a fewer number of subdivisions, 

the line lengths are large with respect the spatial correlation length and the locally 

averaged statistics are reduced with respect to the input statistics. 

 

 
 

 

Fig. 5.  Influence of number of subdivisions on local averaging: influence 

on the (a) mean and (b) standard deviation 

 

  Using properties derived from the above local averaging theory in Equation (3) and 

performing a first order second moment (FOSM) method to determine the probability 

that the factor of safety will be less than 1.0, with the point mean fixed at C=0.25 

leads to Figures 6 and 7.  Figure 7 clearly shows the influence of the length over 

which the local averaging is occurring.  All curves cross over at a critical value of VC 

= 1.08, which is the value of VC which results in the MedianC = 0.17 (see Table 1).  

This result is similar to the study presented by Griffiths and Fenton (2004) where a 

critical value of VC was determined by performing variance reduction over a square 

element. 



 
 

Fig. 6.  The probability of failure versus spatial correlation length for 

different numbers of subdivisions; the mean and coefficient of variation 

are fixed at C=0.25 and VC=1.0, respectively 

 

 
 

Fig. 7.  The probability of failure versus coefficient of variation for 

different numbers of subdivisions; the mean and special correlation 

length are fixed at C=0.25 and C=1.0, respectively 

RANDOM FINITE-ELEMENT METHOD 

  The RFEM enables soil property variability and spatial correlation to be accounted 

for in a rigorous and general way.  The method involves the generation and mapping 

of a random field of shear strength values onto a refined finite element mesh.  Full 

account is taken of local averaging and variance reduction at the element level, and a 

spatial correlation function (Equation 5) is incorporated.  An elasto-plastic finite 

element analysis is then performed using a Mohr-Coulomb failure criterion (see e.g. 

Griffiths & Fenton, 2001).   For a given set of input shear strength parameters (C, 

C, ln C), 1000 simulations are performed for each set of input parameters and the 

probability of failure is defined as the proportion of 1,000 Monte Carlo slope stability 

analyses that failed.  



  Figures 8 (a and b) show typical meshes and the influence of spatial correlation 

length on the shear strength values populating the mesh.  Dark and light regions 

represent “weak” and “strong” soils, respectively. 

 

 
Fig. 8.  Influence of spatial correlation in RFEM 

 

  In the RFEM approach, the failure mechanism is free to “seek out” the weakest path 

through the soil.  This is illustrated in Figures 9 (a and b) where the shear strain 

invariant has been contoured at failure for two Monte Carlo simulations.  Dark areas 

represent a high value of the shear strain invariant and light areas represent low 

values.  To emphasize the “seeking out” effect, the critical  failure surface given by 

Bishop’s method is shown.  Figure 9a clearly shows a failure mechanism that is quite 

different from that determined by classical limit equilibrium methods. 

 

 
 

Fig. 9.  Strain invariant contour for C=0.25, VC=1.0 and C=1.0 

 

    The results from the RFEM are shown in Figure 10. 

 



 
 

Fig. 10.  The probability of failure versus coefficient of variation based on 

RFEM; the mean is fixed at C=0.25 

 

  To better illustrate the differences in the predicted probabilities of failure by the two 

techniques, Figures 11 (a and b) show the results of both the simple approach and 

RFEM.  Figure 11 shows that by taking too few subdivisions, the simple approach 

can lead to an unconservative prediction of the probability of failure.  This effect is 

particularly noticeable for higher values of say VC > 0.5.  This can be expected as the 

assumed failure surface does not always represent the failure mechanism of a 

spatially random soil as shown in Figure 9. 

 
 

Fig. 11.  The probability of failure versus coefficient of variation; the 

mean is fixed at C=0.25, a) C=1.0 and b) C=0.5. 

 

  CONCLUDING REMARKS 

  This paper has demonstrated two methods by which soil variability including spatial 

correlation can be accounted for in probabilistic slope stability analysis.  

 



  In the first method, the critical failure surface was assumed to be circular as would 

be obtained from classical slope stability considerations. The circle was then 

subdivided and 1D local averaging performed over a typical arc length. The resulting 

locally averaged mean and standard deviation were then used in a FOSM analysis. It 

was found that the number of subdivisions used prior to local averaging had a 

significant influence on the estimated probability of failure.  In particular, if too few 

subdivisions were used, unconservative predictions were made which underestimated 

the probability of failure. 

  A second approach using the rigorous Random Finite Element Method (RFEM) 

highlighted important deficiencies in the simple approach. Firstly, the RFEM  makes 

no a priori assumption about the shape or location of the critical failure surface and 

allows the slope to “fail where it wants to fail”. In each Monte-Carlo simulation, the 

analysis is able to “seek out” the critical failure mechanism which can be quite 

different to the conventional circular path given by classical slope stability methods. 

This was demonstrated clearly in plots of the plastic shear strain invariant at slope 

failure for typical realizations of the Monte-Carlo process.  

  While the probability of failure predicted by the first method was improved by using 

more subdivisions, methods which fix the failure surface in advance should be 

avoided. This is because even when local averaging and spatial correlation are 

properly accounted for, fixed failure surface methods are inherently unconservative 

because they lead to upper-bound solutions.  

 

REFERENCES 

Bishop, A. W. (1955). “The use of the slip circle in the stability analysis of slopes.”  

Geotechnique, 26, 453-472. 

Christian, J. T. (1996), Ladd, C. C. and Baecher, G. B. (1994). “Reliability applied to  

slope stability analysis.” J. Geotech. Eng., 120(12), 2180-2207. 

Duncan, J. M. (2000). “Factors of safety and reliability in geotechnical engineering.” 

J. Geotech. Geoenviron. Eng., 126(4), 307-316. 

Duncan, J. M., Navin, M., and Wolff, T.F. (2003), Discussion of “Probabilistic slope 

stability analysis for practice.”, Can Geotech. J., 40, 848-850.  

El-Ramly, H., Morgenstern, N. R., and Cruden, D. M. (2002). “Probabilistic slope 

stability analysis for practice.” Can. Geotech. J., 39, 665-683. 

Fenton, G. A., and Vanmarcke, E. H. (1990). “Simulation of random fields via local 

average subdivision.” J. Eng. Mech., 116(8), 1733-1749. 

Griffiths, D. V., and Lane, P. A. (1999). “Slope stability analysis by finite elements.” 

Geotechnique, 49(3), 387-403. 

Griffths, D. V., and Fenton, G. A (2001). “Bearing capacity of spatially random soil: 

The undrained clay Prandtl problem revisited.” Geotechnique, 51(4), 351-359. 

Griffths, D. V., and Fenton, G. A. (2004). “Probabilistic slope stability analysis by 

finite elements.” J. Geotech. Geoenviron. Eng., 130(5), 507-518. 

Kulhway, F. H. & Phoon, K. (1999). “Characterization of geotechnical variability.” 

Can. Geotech. J., 36, 612-624. 

Lee, I. K., White, W., and Ingles, O. G. (1983). Geotechnical engineering., Pitman, 

London. 



Li, K. S., and Lumb, P. (1987). “Probabilistic design of slopes.” Can. Geotech. J., 24, 

520-531. 

Mostyn, G. R., and Soo, S. (1992). “The effect of autocorrelation on the probability 

of failure of slopes.” 6
th

 Australia, New Zealand Conf. on Geomechancis: 

Geotechnical Risk, 542-5496. 

Paice, G. M. (1997). “Finite element analysis of stochastic soils.” PhD thesis, Univ. 

of Manchester, U.K. 

Phoon, K. & Kulhawy, F. H. (1999).  “Characterization of geotechnical variability.” 

Can. Geotech. J. 36, 612-624. 

Smith, I. M. and Griffiths, D. V. (2004). Programming the finite element method, 4
th

 

Ed., Wiley, Chichester, U. K. 

Smith, I.M. and Hobbs, R. B. (1974), “Finite element analysis of centrifuged and 

built-up slopes.” Géotechnique, 24(4), 531-559. 

Spencer, E. (1967). “A method of analysis of the stability of embankments assuming 

parallel interslice forces.” Geotechnique., 17(1), 11-26.  

Taylor, D. W. (1937). “Stability of earth slopes.” J.  Boston Soc. Civ. Eng., 24, 197 

-246. 

Vanmarke, E. H. (1977). “Reliability of earth slopes.” J. Geotech. Eng. Div., AM. 

Soc. Civ. Eng., 103(11), 1247-1265. 

Wolff, T. F. (1996). “Probabilistic slope stability in theory and practice.” Uncertaint 

 in the geologic environment:  From theory and practice, Geotechnical 

Special Publication No. 58. C. D. Shackelford et al., eds., ASCE, New York, 

419-433. 

Zienkiewicz, O.C., Humphenson, C., and Lewis, R. W. (1975). “Associated and non- 

associated viscoplasticity and plasticity in soil mechanics.”     

 Geotechnique,25(4), 671-689.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

KEYWORDS: 

slope stability, probabilistic analysis, finite element analysis, local averaging, spatial 

correlation. 


