Probabilistic Analysis of Foundation Settlement

by Gordon A. Fenton!, G.M. Paice?, and D. V. Griffiths®

Abstract

the tail of the distribution, A method of predicting the single parameter is given in
terms of statistics of the elastic modulus field and local averages over the field. An
example is presented to illustrate the proposed methodology for a single footing,

INTRODUCTION
The settlement of structures founded on soil is a subject of considerable interest to
practicing engineers since excessive settlements often lead to serviceability prob-
lems, In particular, unless the total settlements themselves are particularly large, it is
e
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652 UNCERTAINTY IN GEOLOGIC ENVIRONMENT

actually differential settlements which lead to unsightly cracks in facades and stryc.
tural elements, possibly even to structural failure (especially in unreinforced masg
elements). Existing code requirements limiting differential settlements to satisfy ser-
viceability limit states (see building codes ACI 318-89, 1989, or A23.3-M84, 1984)
specify maximum deflections ranging from D/180 to D/480, depending on the type
of supported elements, where D is the center-to-center span of the structural elemen,
In practice, differential settlements between footin gs are generally controlled, not by
considering the differential settlement itself, but by controlling the total settlement
predicted by analysis using an estimate of the soil elasticity. This approach is largely
based on correlations between total settlements and differential settlements obseryed
experimentally (sce for example D’ Appolonia et.al.,1968) and leads to a limitation of
4 to 8 cm in total settlement under a footing as stipulated by the Canadian Foundation
Engineering Manual, Part 2 (1978).

Because of the wide variety of soil types and possible loading conditions, experimenta]
data on differential settlement of footings founded on soil is limited, With the aid
of modern high-speed computers, it is now possible to probabilistically investigate

differential settlements over a range of loading conditions and geometries. This paper

reports the initial findings of such a study and attempts to provide a relatively simple,

albeit approximate, approach to estimating probabilities associated with settlements,

The paper first considers the case of a single footing, as shown in Figure 1(a), and

estimates the probability density function (PDF) governing total settlement of the

footing as a function of footing width for various input statistics of the underlying soil.

All other parameters are held constant. The footing is assumed to be founded o a

soil layer underlain by bedrock. The results are generalized to allow the estima n
of probabilities associated with total settlement under an isolated footing in m
practical cases. It is emphasized, however, that the results are still preliminary,
being still many aspects of the problem that need investigation. Thus, the results
presented in this paper should be viewed as providing only ball-park estimates in th
absence of further theoretical and/or empirical developments.

The second part of the paper addresses the issue of differential settlements und
pair of footings, as shown in Figure 1(b), again for the particular case of footi
founded on a soil layer underlain by bedrock. The mean and standard devi
of differential settlements are estimated as a function of footing width for v
input statistics of the underlying elastic modulus field. Unfortunately, the probabil
density function governing differential settlement is as yet unknown and only r
estimates of probabilities associated with differential settlement can be made (ba
numerical integration of a joint probability density function), In this paperas
one-parameter exponential distribution is fitted to the simulation data. Since s
simple distribution cannot hope to capture the intricacies of the actual distri
the fit is aimed at yielding reasonably accurate probability estimates in the tai
distribution for the particular geometry shown in Figure 1(b). :

The physical problem is represented using a two-dimensional model. If th
extend for a large distance in the out-of-plane direction, z, then the 2-Dela

field is interpreted either as an average over z or as having an infinite scale of
in the z direction. For footings of finite dimension, the 2-D model is adm
an approximation. However, the approximation would be reasonable if th
modulus were suitably averaged in the z direction. These issues are not
in here and thus the derived 2-D results must be viewed with caution penq 1
sensitivity study.
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Figure 1. Random field/FEM Tepresentation of a) 5 single footing, and b) two foor-
ings founded on a soil layer,

THE RANDOM FIELD/FEM MODEL

Asillustrated in Figure 1, the goi] Mass is discretized jnt 60 four-noded Quadrilatera]
tiéments in the horizontal direction by 20 elements in the vertica] direction. The
O¥erall dimensjong of the soil mode] gre held fixed at 7, = 3 in width by H = 1 ip
-~ height, Herein, parameters wil he expressed withoyt units, it being understood that 5

e assumed to pe rigid, to not undergo any rotations, and (o have a rough interface
With the underlying soj] (no-slip bounda.ry).

sreater than () 5 WEIe not considereq since this Situation approaches that of 5
footmg (the footings Wwould be joined when W, = 1.0). In al] cases, the footing
Were held constang at 1.0,

S0il hag ty, Properties of interest 1 the settlemeng problem: these are the elastic i
US, E(z), and Poisson’s ratio, v(z), where 18 spatia] position. At thig time for
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Table 1. Input parameters varied in the study while holding H =1, p = 1, P =i
#e=1,and v = 0.25 constant.

| Values Considered
0.1,05, 1.0, 2.0, 4.0
0.01,0.05,0.1,0.3, 0.5, 0.7, 1.0, 2.0, 5.0,10.0
0.1,0.2, 0.5, 1.0 (single footing)
0.1, 0.3, 0.5 (two footings)

Figure 1 shows, along with the finite element mesh, a grey-scale representation of 3
possible realization of t_he elastic modulus field. Lighter areas denote smaller valyeg

elastic modulus under the left footin g than under the right — this leads to the substantial
differential settlement indicated by the deformed mesh. This is Just one possible
realization of the E field; the next realization could just as easily show the opposite
trend, or perhaps something in between.

The elastic modulus field is assumed to follow a lognormal distribution so that In(E)
is a Gaussian (normal) random field with mean y, ., and variance ot 5. The choice
of a lognormal distribution is motivated by the fact that the elastic modulus is strictly
positive, as stipulated by the lognormal distribution, while havin g asimple relationship

2lz

P s(z) = exp { —(ﬁ} M

Ine

correlation coefficient (normalized covariance). The correlation function decay rate
is governed by the so-called scale of fluctuation, 8, ,, which, loosely speaking, is the
distance over which elastic moduli are significantly correlated (when the separation
distance |r| is greater than Bz, the correlation between E(z) and E(z") is less than
14%). | ?

The assumption of isotropy is, admittedly, somewhat restrictive, Although an ellip-
soidally anisotropic random field can he converted to an isotropic random field by
suitably stretching the coordinate axes, this transformation cannot be performed ina

data from a series of locations in Space, estimating the correlations between (h
data as a function of Separation distance, and then fitting Eq. (1) to the es
correlations. See, e.g., Degroot and Baecher (1993), de Marsily (July 1985),
and Grivas (May 1982), Ravi (1992), Soulié et.al.{1990),and Chiasson etal(19 _



on settlement va.riability.' The barameters of the transformed In(E) Gaussiap random
field may be obtained from the relationg,

%z =In(l + o5/ B2 (2a)

Fins =1n(ug) — 152 (28)

from which it cap be seen that the variance of In(E), Ot 5, Varies from 0.01 1o 2.83
note that the mean of In(£) is not constant),

expected to approach that obtained in the deterministic Case, with F = = EVerywhere,
and has vanishing varjance. By similar reasoning, the differentia) settlement in thig

obtained by using a single Iognormally distributed random variable, £, tq mode] the
soil, B(z) = | That is, if tha Settlement, §, under a footing founded 0n a soil Jayer
with uniform (but random) elastic modulus F ig given by § = §det,uE/E, for &,,, the
Seltlement when g - “r eVerywhere, thep as B, — oo the settlement assumes a
lognormal distribution with parameters

Fias = In(8400) + In(u ) — Fne =In(by.,) + 162 (3a)
g = Oy (3b)
Where Eq. (2b) was used in Eq. (3a). Also since, in thig Case, the settlement under the
two foou'ng_rs of Figure 1(b) becomes equal, the differenia] seltlement becomesg Zero,

Us, the differentia] Settlement ig €xpected to approach zero both gt Very small and a¢
Yery large scales of fluctuation,

Because the variability of the elastic modulyg field to be considered can pe quite large,
Cov = 4 i
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performed for each input parameter set (05, 6,5, and We). If it can be assumeq
that log-settlement is appro_ximate_ly normally dis_tribpteq (which is seen latey to be 3

given by o, ~ siu5/\/m = 0.0225,, sando, o /2.2 0.032sf,; 50 that the
estimator ‘error’ is negligible compared to the estimated variance,

Realizations of the log-elastic modulus field, G(z,), are produced using the two-
dimensional Local Average Subdivision (LAS) technique (Fenton and Vanmarcke,
1990, Fenton, 1994), where G(z,) is the local average of a zero mean, unit variapee
Gaussian random field over the domain of the element centered at Z;. The &enerated
field correctly reproduces the mean, variance and covariance structure of the 2-D loca]
average process. The elastic modulys value then assigned to the ;’th element is

E(E:) = exp{ﬂl‘n et 0L G(%;)} (4)

Once the field of elastic modulus values is assigned, the settlement(s) are computed
via finite element analysis. ‘

SINGLE FOOTING CASE
=2 0Lt FUULING CASE.

A typical histogram of the settlement under a single footing, as estimated by 2009

realizations, is shown in Figure 2. This is for the case where the footing has w,
Wi/H =02, oe/py =2, and Oz = 0.7. With the requirement that settlemen,
non-negative, the shape of the histogram Suggests a lognormal distribution, whic

adopted in this study (see also Eq. 3) . The histogram itself js computed over
equally spaced intervals between In(z,,;,,) and In(z,,,,), in log-space, where T
Tma are the minimum and maximum settlements observed in the sample of 2000,
histogram is normalized to enclose a unit area and 3 straight line is drawn between
interval midpoints,

=]

0.

Frequency Count
T Mg §=1316, 0 5 =0.7927

Normalized Frequency
0.1

0 S 10 15 20 25 30
Footing Seltlement

Figure 2. Typical frequency histogram and fitted lognormal distribution of s
under a single footing.

Infacta Chi-Square goodness-of-fit test gives a critical p-value of 1 x 10E%
p-value may be interpreted as the probability of mistakenly tejecting

Square test is quite sensitive to the ‘smoothness’ of the histogram, Altho|
probably be well worth investi gating the Kolmogorov-Smirnoy goodne,



reasonable one,

Table2.  Fraciion of simulation runs wigy Chi-Square 800dness-of-fit Critica] p.
value greater than that indicated,

next task is to estimage the parameterg of the fitted lognormal distributions a5 functiong
of the input parameters ( Wy, oy, and Guz). The lognormag distribution,

~ 1 L /g — 4 N2
fm‘m“ﬂ{‘i(?gr)’ PErse @

has two parameters, y) - and %ns. Figure 3 shows how the estimator of Hia s, My 5,
varies with e for W W H =01, Similar resy)g were found for the other footing
widths. All scaleg of fluctuation are drawn in the twq Plots, but are not individually

Figure 3 Suggests that the mean of log-settlement can be estimateq by a straight line
of the form

Fns = 1n(é,,,) +agof, (6)
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Figure 3. Estimated mean of log-settlement.

The slopes of the curves in Figure 3 are almost uniformly 0.5, as predicted for the
settlement by Eq. (3a) in the large and small scale of fluctuation cases. Note that if
the settlement mean is independent of the scale of fluctuation, Eq. (3a) is valid for
any scale. However, there is in fact a slight dependence of the slope, a;, on y, .. The
second term in the following is a small correction obtained from plots of the slope o,
versus Wy and 0y,

_ 0.041 1 2
a; =05+ “—VV\/I_/_H exp {‘Z(ln(glnE/H)+l) } (8)

Eq. (B) is entirely empirical, but does have the correct limiting forms for large and
small §y, ;. It is unknown at this time if it can be applied for values of W;/H outside
the range investigated. The physical interpretation and analytical verification of the
correction term in the above needs further investigation. '

- Wy/H= 0.10
=
O/l = 4.00 e I 4 = 3
: _e-_g- O
g = ] -..-—..-,..—-.-_.
= - G..-.—_.--..
| op/ig = 0.10
E
T I T I | | |
-5 4 -3 3 T T : :
ln( 91n E /H )
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i
wo _|
=
w
E

-1
In( 6, z/H)
Figure 4. Estimated standard deviation of lo g-settlement.

The estimator of the standard deviation of log-settlement, s, is plotted

for the smallest and largest footing widths. Intermediate footing widths giy
results. In all cases, it can be seen that sy,5 — oy, for large 6. ItiS

0
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that the reduction in variance as [ decreases ig due largely to the locai averaging
effect under the footing. That is, if the average of In(£) is taken over Some areg under
the footing, then thig average is expected to have smajjer variance for smaj) Scales of
fluctuation thap for large, This is because_there are more ‘independen’ Samples in the

S onine
then the variance of £ is 0% /n if the E’s are Mutually independent (the 1/n factgr
is the variance Teduction) — thig Case corresponds tq the 6, — 0 Case. On the other
hand, if the 5,5 are Lully correlateq Bz — c0), then the variance of £ i Jjust o3, so
that there is ng Variance reduction, See Vanmarcke (1984) for more details on local
averaging theory, The variance reduction effects are clearly seen ip Figure 4,

Following this reasoning, and assuming that Joca] averaging of the area under the
footing accountg for all of the variance reduction seep in Figure 4, the standard
deviation of log-setilement i

s =/ v(W;, H; Ornp) oy, (9)

in which ~( W, H; 01 z), the s0-called variance function (Vanmarcke, 1984), gives the
amount that the varjance is reduced whep the random field is averaged over g region
of size W, x . Note that the dependence of the averaging region on 4 is apparently
only valid for the test case considered; if the foou‘ng is foundeg 0on a much deeper soi]
mass, one would not expect to average over the entire depth due [0 stresg distribution
with depth. This issye needs additiong] study,

2

W./H=01

Ottty Wr/H =01 (pred)
Ol =40

S———0 WH=1g e

[ WﬁH:l.O(predJ

wh
pri
&
o W /H=0]
- f ®--u_y W /H = 0.1 (pred)
" —_—— Wlez 1.0
3 W./H=10 (pred)

2 4

g n
figure 5, Comparison of simulation estimated standarg deviation of log-settlemen
with theoretica] estimate, Eq, (9).

rbf'the isotropic Gauss-Markoy correlation function used torepresen the In(E) ran dom
eld (Eq, » the variance function ig closely approximated by

715 0) = 43y yy(dyfayy + 11 ay)] 10
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d\ 3] AL
(dy) = [1 + (791) J ) Y(d;|d;) = {1 + (‘R—) } (11a)

Rj=9[%+(1—%) exp{—(g%)z}] (118)

in which d; are dimensions of the averaging region. Predictions of Ting using Eq. (9) are
plotied in Figure 5 against the simulation results for the largest and smallest footin

widths and o,/ p, values considered in this study. The agreement is remarkable,
Intermediate cases show similar, if not better agreement with predictions.

Single Footing Example
2o Tooling BExample

Consider a single footing of width W, = 2.0 m t0 be founded on a soil layer of
depth 10.0 m and which will support a load P = 1000 kN. Suppose also that samples
taken at a nearby location ! have allowed the estimation of the elastic modyl
and standard deviation at the site to he 40 MPa and 40 MPa respectively, Similarly,
nearby test results on a regular array have resulted in an estimated scale of fluctuation,

B =3.0 m. Assume also that Poisson’s ratio is 0.25. '

The results from the previous section can be used to estimate the probability that
settlement under the footing will not exceed 0.10 m as follows;

1) A deterministic finite element analysis of the given problem with elastic mod
everywhere equal to p, = 40 MPa gives a deterministic settlement of &,
0.03531 (note that Eq. 7 gives 8,,, = 0.03604, a relative difference of 2%),

2) for W;/H=02and @,, = 3,use Eq. (8) to compute as,

0.041

2
a =0.5+ 705 exp{~§(]n(3/10) - 1) } =0.5601

3) compute variance of log-elastic modulus,

2
ot . =1In (1 + (%1) ) =1n(2) = 0.69315
B

o = 0.83256
4) compute mean of log-settlement, _
Fins = 10(8ger) + 207, 5 = ~3.3437 + 0.5601(0.69315) = ~2.9554

5) compute standard deviation of log-settlement using Eq.’s (9) through (11),

YV) = [1+- (W, /0, 07777 = [14 2737 = 024

in the previous section would not be applicable: When information about the act
statistical information) is known, then the site varlability is considerably reduced. s
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Y = [L+ (t1/g, -2t _ [+ (107327213 _ 0.27107

W 2
R1=3[§+(1-5&) exp{— (@L) }J:&zszzs
2% E

H 2
R, =3Z§+(I -3 exp{~ (——_ H =4.69343
in'nE

YW H) = [14 (W / Byy312) =23

=0.84907

VWHIW,) = [1 4 @R P 2 29961

"0 Hibus) = 4 LWy YH Yy W, m)

] = 0.22458
Ty = \/V(Wf,f{;@m.g)%a =v0

& .22458(0.83256) =0.39455
Aside: for

Hmg = —2.9554 anq o
and varianc,

Ing = 03945 »
€ ¢an be obtainey from

o 3, the corresponding settlement mean
the transformalions

Hs =explu s +

210',15} =0.0563 p

s = pig\ s _ 1=0.023;
alizations for this propy
8 0f 3.29% and 55%
Iy 0.0005 for 2000 re
e the desireq probabﬂity using

m
A trial run of 2000 re

for relative difference
0n my is approximate
6) comput

oM gives m, = 0.0582 ang S5 =0.0219
Spectively,

re The estimated Standard error
alizationg,

the lognormag distribution,

In(0. —
P[5 <0.10)= ¢ (3(95’)__#_1_5
ain5
= 9(1.6546)
=0.951

where &(.) ig the standarg normal Cumulative disrribution, whose table of valueg
can be found jp any good probability textbook,
The simulation run for thig Problem yieldeg 1892 samples out
1ess than 0,1 m. This giveg 4 Simulation hage estimate of th
0946, 5 relative difference of only .59, Althoy i
Labit cautioyg since if the

vo FOOTING casp
ng €stablished with reasonable confidence the distribution associated with settle-
Under 5 single footing Tounded op 5 s0il layer, altent;

dlfﬁculr‘problem of finding 4 guj istri

0n can now pa turned to the
1bution tg mode] differentia] settlement
“WEEN foptine

gs. Analyticallyf i under the Jeft footing shown
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in Figure 1 and & is the settlement of the right footing, then according to the resultg
of the previous section, é; and &, are Jjoint lognormally distributed random variableg
following the bivariate distribution

1 1
fo5(z,y) = me’ip {‘5"; (92 - ps 0,0, + ‘I’i]} (12)

forz >0,y > 0, where ¥, = (Inz — pu5)/01,5, Yy = (Inz — p1,5)/ 0105, and where
2 =1— p2 - with py, ; being the correlation coefficient between the log-settlement of
the two footings. It is assumed in the above that 6y and &, have the same mean and
variance, which, for the symmetric conditions shown in Figure 1(b), is a reasonable
assumption,

If the differential settlement between footings is defined by

A=1b -6 (13)
then the distribution of A is given by

AL jo B,y (14)

Unfortunately, this integral cannot be solved analytically insofar as the authors are
aware, although for design purposes it can be estimated usin g any available reliabil;
tool, such as first- or second-order reliability methods. Such numerical approximatio
10 Eq. (14) are being investigated for a future publication. It is not hard to show that
the variance of A can be written, i

o4 = 2(1 - ps)of — pi
where py is the correlation coefficient between & and &,.

Figure 6 shows a typical histogram of differential settlement between the two e
sized footings. Superimposed on the histogram is a trial exponential distribu
having the form

fal@) = o exp{-z/pa}
with 4 taken as 0.8998 which is the data average. Although this distribution fai

Chi-Square goodness-of-fit test, it appears to capture the major trends in the histo;
particularly in the tail.

v
i Frequency Count
| P S = Wy =0.8998, 0, =0.9557
g
g~
&
3
B
E n
(=]
=]
z

3 4 5 6
Differential Settlement

Figure 6. Frequency histogram and fitted distribution for differential s
der two equal sized footings. J
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) : Tepresentatiye of th
= #a). A trial functiog of the fi 4

me — 0, the Previoyg Section
predicted ol - 0, and when | A | oo, the Correlation coefficient between the £, oting
settlements, Ps — 1. Thus Eq. (17) is in agreement with the observation that differen.
tial settlementg are expected to £0 1o zero for byt very small and Very large Values of
Ing
. WeH = 0.50
(=]
- Cpfug= 0.10
[ Opfig = 1.00
S =——0 G- 400 __0_49+—~@——-e——e
Eq S P =P .__”_“__G.......-@.--—G----G----“-*-—G--—-——---w--a-.....,,_c
G— P S— e
E

10°

Ol = 0.10
Oy Cpllg = 1.00
S === opiuz= 400

10?

dverages are of dimension

under the twq footings; thege local
W, in width by H in height and are Separated, center 1
Center, by the distance [, € Correlation, Ps, can be fo
function a5

1
B = 2—@{ D~W;Py(D-w,, H)+(D+Wf}2~r(D+Wf, H)-2D%(p, HJ} (18)
¢
- Where
the

the (; O s) notation is noy dropped for Convenience,
the vazj

it being understood that
rdhance functipp jg dependent on O g CaIcuIating Hins a i
Section (Eq’s 6 to 9) then allows t

he computation of is and o2
!

o5,

Hs =exp{uy, s + %Oﬁa}

2
F = pd(ehe 1y



664 UNCERTAINTY IN GEOLOGIC ENVIRONMENT

With these results, the correlation ps can be found from

_ exp{pmsohs} — 1
7= Texplolsl -1 o

and pa can now be estimated using Eq. (17) if a suitable value of 3 is found.

To test the ability of the assumed distribution to accurately estimate probabilities, the
probability :
PIA <app]=1-¢" (21)

for e varying from 0.5 to 4.0, is plotted against the corresponding probabilities esti-
mated directly from the simulation results. After some trial and error, a 3 value of 2/3
was found to give the most accurate probabilities on average over the range of W,
g/ iz, and by, considered here. Figure 8 shows the predicted probabilities using
Eq. (17) with 3 = 2/3 alongside the estimated probabilities averaged over all o/
and &, , parameter values. When results are not averaged over parameter values, the
agreement is typically less good away from the tails (some above, some below) but
generally reasonable in the tails.

e
=1
oc
® -
e
=
g Predicted
= o ———a W;/D=01
ey
Omn® W /D =03
bR === W, /D=05
-
S r T T T T T

0.5 1 15 2 25 3 3.5 4

o
Figure 8. Simulation based estimates of P[A < apa], averaged over all 6,5
o/ by cases, compared to that predicted by Eq.’s (17) and (21).

CONCLUSIONS

On the basis of this initial simulation study, which is by no means complete,
tentative observations are made as follows.

It appears that the settlement under a footing founded on a spatially rand
modulus field of finite depth overlying bedrock is reasonably well represen
lognormal distribution, if £ is also lognormally distributed, with parameters /i
ot 5. The first parameter, u, 5, is dependent on the mean and variance of the unde
elastic modulus field and may be largely derived by considering limiting values
Although there is some question as to why the slope correction term appearin
(8) is necessary, including it yields quite accurate estimates of the mean log-s¢
Itis significant to note that the second parameter, o, is very well approxir
variance of a local average of the elastic modulus field in the region directl_y
footing. This gives the prediction of o ; some generality that could pos
beyond the actual range of simulation results considered herein if a suitabl
domain can be defined. Once the statistics of the settlement, s and i



The differentig) settlement follows 3 more complicateg distribugj
ment itself (see Eq. 14), This is seen

which tend to pe quite erratic wih leng‘ tails, Clearly the differ,

I On than thy; of setile.
also in the differentia] settlement hist 5

€
ol i CIENCe between two log-
normally distribyieq random Variables js nog €xXponentia]] i i

[hi.g diff_erence follow 3 normal distnbu[jon, the normal di
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