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C. M. Goss and D. V. Grif®ths, Colorado School of Mines
The authors have very effectively presented upper and lower

bound plasticity solutions for the classical problem of the
bearing capacity of two-layered clays.

In referring to alternative methods of solving this problem
however, the authors state the `experience has indicated that
results from the displacement ®nite element method tend to
overestimate the true limit load and, in some instances, fail to
provide a clear indication of collapse altogether'.

This is not the experience of others working in the ®eld, who
know that the locking phenomenon to which the authors refer is
easily avoided. The elasto-plastic displacement ®nite element
method has been shown repeatedly (e.g. Zienkiewicz et al.,
1975; Grif®ths, 1982; Grif®ths & Lane, 1999) to give reliable

solutions to a range of collapse problems in geomechanics,
especially plane strain analyses involving öu � 0 soil. In the
1982 paper mentioned above, the two-layered clay bearing
problem was solved quite successfully using a relatively crude
®nite element mesh.

To avoid any further misunderstanding on this issue, a more
thorough parametric study of the two-layer problem has been
performed using a version of Program 6´0 (8-node quadrilat-
erals, reduced integration) from the published software of Smith
& Grif®ths (1988).

A typical mesh for this study is shown in Fig. 19. In all the
analyses, a vertical displacement, äv, was applied incrementally
to a smooth footing, with nodal reactions beneath the footing
back-®gured after each increment from the converged stress
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Fig. 19. Typical mesh used in displacement ®nite element analysis
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Fig. 20. Typical load±displacement curve from displacement ®nite
element analysis

Table 4. Computed values of N�c and Fmax (H=B< 1)

H=B cu1=cu2 Bearing capacity factor, N�c Fmax

Lower bound Displacement FE Upper bound

0´2 0´20 5´44 5´81 5´89 0´0254
0´25 5´44 5´79 5´89 0´0201
0´33 5´44 5´78 5´89 0´0154
0´40 5´44 5´77 5´89 0´0118
0´50 5´44 5´76 5´89 0´0076
0´57 5´44 5´75 5´89 0´0062
0´66 5´42 5´75 5´89 0´0052
0´80 5´30 5´63 5´71 0´0031
1´00 4´86 5´11 5´32 0´0014
1´25 4´06 4´34 4´57 0´0024
1´50 3´57 3´80 4´02 0´0017
1´75 3´19 3´40 3´59 0´0018
2´00 2´90 3´08 3´24 0´0015
2´50 2´46 2´61 2´77 0´0012
3´00 2´15 2´28 2´44 0´0008
3´50 1´93 2´03 2´19 0´0006
4´00 1´75 1´82 2´00 0´0006
5´00 1´48 1´51 1´73 0´0006
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®eld. Convergence after each increment was de®ned as having
occurred when the nodal displacements from one iteration to
the next were changing by less than 0´1%.

Bearing capacity failure was deemed to have occurred when
the nodal reactions reached a maximum and levelled out to
within a tolerance of 0´1%. A typical plot of the development
of bearing resistance with vertical displacement is shown in
Fig. 20.

The shear strength of each layer of undrained clay was
governed by Tresca's failure criterion, de®ned by the dimension-
less function

F � (ó1 ÿ ó3)

2cu

ÿ 1 (11)

Positive values of F generated within the mesh were considered

Table 4. (continued )

H=B cu1=cu2 Bearing capacity factor, N�c Fmax

Lower bound Displacement FE Upper bound

0´5 0´20 4´86 5´14 5´31 0´0110
0´25 4´86 5´14 5´31 0´0093
0´33 4´86 5´14 5´31 0´0070
0´40 4´86 5´14 5´31 0´0059
0´50 4´86 5´14 5´31 0´0040
0´57 4´86 5´14 5´31 0´0034
0´66 4´86 5´14 5´31 0´0029
0´80 4´86 5´14 5´31 0´0021
1´00 4´86 5´11 5´32 0´0015
1´25 4´42 4´66 4´94 0´0019
1´50 4´07 4´27 4´48 0´0024
1´75 3´77 3´95 4´16 0´0024
2´00 3´52 3´69 3´89 0´0019
2´50 3´13 3´27 3´47 0´0017
3´00 2´84 2´96 3´16 0´0015
3´50 2´62 2´71 2´93 0´0013
4´00 2´44 2´50 2´74 0´0011
5´00 2´16 2´15 2´44 0´0008

Table 5. Computed values of N�c and Fmax (H=B> 1)

H=B cu1=cu2 Bearing capacity factor, N�c Fmax

Lower bound Displacement FE Upper bound

1´0 0´20 4´94 5´11 5´32 0´0074
0´25 4´94 5´11 5´30 0´0058
0´33 4´94 5´11 5´30 0´0044
0´40 4´94 5´11 5´30 0´0037
0´50 4´94 5´11 5´30 0´0026
0´57 4´94 5´11 5´30 0´0023
0´66 4´94 5´11 5´30 0´0020
0´80 4´94 5´11 5´30 0´0016
1´00 4´94 5´11 5´30 0´0014
1´25 4´87 5´11 5´30 0´0011
1´50 4´77 4´97 5´18 0´0010
1´75 4´60 4´78 5´00 0´0009
2´00 4´44 4´61 4´82 0´0010
2´50 4´14 4´33 4´50 0´0010
3´00 3´89 4´12 4´24 0´0007
3´50 3´69 3´95 4´02 0´0006
4´00 3´46 3´81 3´83 0´0006
5´00 3´10 3´58 3´54 0´0005

1´5 0´20 4´94 5´11 5´30 0´0070
0´25 4´94 5´11 5´30 0´0058
0´33 4´94 5´11 5´30 0´0041
0´40 4´94 5´11 5´30 0´0034
0´50 4´94 5´11 5´30 0´0029
0´57 4´94 5´11 5´30 0´0025
0´66 4´94 5´11 5´30 0´0021
0´80 4´94 5´11 5´30 0´0017
1´00 4´94 5´11 5´32 0´0013
1´25 4´87 5´11 5´27 0´0024
1´50 4´87 5´11 5´31 0´0019
1´75 4´87 5´11 5´31 0´0017
2´00 4´87 5´11 5´31 0´0014
2´50 4´84 5´07 5´32 0´0014
3´00 4´69 4´94 5´15 0´0014
3´50 4´46 4´79 4´98 0´0012
4´00 4´24 4´69 4´84 0´0011
5´00 3´89 4´50 4´56 0´0009
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`illegal' and redistributed to neighbouring regions that still had
reserves of strength.

Using the authors' de®nition of the bearing capacity factor

N�c � qu=cu1 (12)

computed values of this quantity by elasto-plastic displacement
®nite elements are shown in Tables 4 and 5 and Fig. 21, for a
range of cases, together with Fmax, the maximum value of F
observed within the mesh at convergence. It should be noted

that the limit solutions for H=B � 0:2 were obtained by linear
interpolation of results from the authors' paper.

The upper and lower bounds bracket the displacement ®nite
element results, as might be expected, the one exception being
when H=B � 1 and cu1=cu2 � 5, where the upper bound solu-
tion appears to drift slightly below the displacement ®nite
element result.

The reason for this discrepancy is unclear; however, the
tables indicate consistently small values of Fmax, indicating a
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Fig. 21. Displacement elasto-plastic ®nite element solutions compared with upper and lower bounds: (a) H=B 0:2;
(b) H=B 0:5; (c) H=B 1:0; (d) H=B 1:5
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high level of convergence and accuracy in the displacement
®nite element results.

Figure 22 shows typical nodal displacement patterns from the
displacement ®nite element analyses at failure for the cases of
`weak on strong' and `strong on weak'. The contrasting nature
of the failure mechanisms in each case is clearly indicated.

In summary, elasto-plastic displacement ®nite element meth-
ods, in a single analysis, can be relied upon to give robust and
accurate solutions to a wide range of geotechnical `failure'
problems.

Authors' reply
We should like to thank Goss and Grif®ths for their interest

in our paper. Their discussion does not focus on the results
presented, but instead is chie¯y concerned with the following
statement: `In practice, great care must be exercised when ®nite
element analysis is employed to predict limit loads. Even for
quite simple problems, experience has indicated that results
from displacement ®nite element method tend to overestimate
the true collapse load and, in some instances, fail to provide a
clear indication of collapse altogether'.

It is a well-known fact that displacement ®nite element
analysis of undrained geotechnical problems can encounter
severe numerical dif®culties. In particular, the accuracy of the
stresses computed from conventional ®nite elements is often
reduced dramatically as the compressibility approaches zero.
This phenomenon, which leads to an erroneous stiffening of the
load deformation response, is widely known as `locking', and
has been reported in the literature by many researchers (e.g.
Herrmann, 1965; Christian, 1968; Zienkiewicz et al., 1971;
Naylor, 1974; Nagtegaal et al., 1974; Sloan, 1981; Sloan &
Randolph, 1982; de Borst & Vermeer, 1984; Burd & Houlsby,
1990; Yu et al., 1993; Yu & Netherton, 2000).

In 1974, Nagtegaal et al. published a landmark paper on the
dif®culties associated with ®nite element calculations in the
fully plastic range involving incompressible behaviour. By con-
sidering the limiting case of a very ®ne mesh, they proved that
most displacement ®nite elements that employ low-order poly-
nomials to model the displacement ®eld are not suitable for
incompressibility computations, particularly for axisymmetric
problems. This is because the incremental incompressibility
condition imposes a large number of constraints on the nodal
velocities, which effectively reduces the available number of
degrees of freedom. Since these constraints may multiply at a
faster rate than the new degrees of freedom as the mesh is
re®ned, it may not be possible to ensure that there are suf®cient
degrees of freedom available to accommodate the constant vol-
ume condition, regardless of how many elements are used in
the grid.

One of the earlier approaches used to overcome this problem
is the reduced integration rule suggested by Zienkiewicz et al.
(1971). The element most commonly used in this method is the
8-noded rectangle with 4-point integration. As discussed by
Naylor (1974) and Sloan & Randolph (1982), reduced integra-
tion has the bene®cial effect of decreasing the total number of
incompressibility constraints on the nodal degrees of freedom.
This is clearly seen by noting that the maximum number of
constraints per element must be less than, or equal to, the total
number of integration points used in the calculation of the
element stiffness matrices. A quasi-theoretical justi®cation for
using reduced integration in analysing incompressible materials
has been given by Malkus & Hughes (1978). They proved that
displacement formulations with reduced integration are, in cer-
tain cases, equivalent to mixed formulations where both stresses
and displacements are treated as variables. Although concept-
ually appealing, this equivalence does not guarantee that spur-
ious deformation modes will not occur.

Although it was once widely used in the ®nite element
community, the reduced integration method can produce spur-
ious stress and displacement oscillations. To illustrate the limit-
ations of the reduced integration method, Sloan & Randolph
(1983) presented examples of footings and vertical cuts in
which the reduced integration approach leads to incorrect or
unacceptable deformation predictions. More recently, Naylor
(1994) demonstrated that even a high-order element (cubic
triangles), when used with six integration points (reduced
integration), produces a zero-energy mechanism. These short-
comings are well known in the area of computational geome-
chanics and a number of other important cases have been
discussed by Sloan (1981) and de Borst & Vermeer (1984)
among others. At a more fundamental level, the major limita-
tion of using the reduced integration technique is that the
incompressibility condition is satis®ed only at a limited number
of integration points, rather than everywhere within the ele-
ment.

The authors did not mean to suggest that displacement ®nite
elements should be avoided for collapse analysis, merely that
they should be used with extreme care.

Finally, a major advantage of the methods used in the paper
is that the upper and lower bounds automatically provide an
error estimate for the limit loads. This feature is invaluable for
collapse analysis where the exact solution is unknown.
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