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ABSTRACT: The effect of random and spatially correlated soil permeability on confined seepage be-
neath a single sheet pile wall has been studied. Random field theory for the generation of soil permeability
properties with a fixed mean, standard deviation and spatial correlation structure, have been combined
with finite element methods to perform ‘Monte Carlo’ simulations of the seepage problem. The results
of parametric studies to gauge the effect of the standard deviation and correlation structure of the per-
meability on the output statistics relating to seepage quantities and exit gradients are presented. In all
cases, comparison is made with results that would have been achieved on a deterministic basis.

1 INTRODUCTION

This work presented in this paper brings together
Finite Element Analysis and Random Field The-
ory in the study of a simple boundary value prob-
lem of steady seepage. The aim of the investiga-
tion is to observe the influence of soil variability on
the expected value of ‘output’ quantities such as
the flow rate and exit gradient. Smith and Freeze
(1979, Pts. 1 and 2) were among the first to study
the problem of confined flow through a stochastic
medium using finite differences, in which examples
of flow between parallel plates and beneath a single
sheet-pile were presented. Recent developments in
random field and finite element methodology have
led to further studies of steady seepage problems
for a range of boundary value problems (Fenton
and Griffiths 1993, Griffiths and Fenton 1993).

A conference on probabilistic methods in geotech-
nical engineering (Li and Lo 1993) highlighted
some of the recent advances in this field. For ex-
ample Mostyn and Li (1993) emphasised the im-
portance of taking account of the spatial correla-
tion of soil properties in probabilistic analyses. It
was pointed out that the “vast majority of existing
models do not do this”, and although their partic-
ular application was the analysis of slope stability

in which the random soil properties in question
were the shear strength parameters, the same ar-
guments could be applied to soil permeability in a
seepage problem. White (1993) also described how
early probabilistic analyses typically represented
soil property uncertainty by the use of a single
‘perfectly correlated’ random variable which was
varied from one realization to the next.

The use of random fields (Vanmarcke 1984, Fen-
ton and Vanmarcke 1990} was considered to be an
important refinement, in that the soil property at
each location within the soil mass was itself consid-
ered to be a random variable. An important fea-
ture of the random field approach is that it appro-
priately takes into account the positive correlation
that is observed between soil properties measured
at locations that are ‘close’ together.

2 BRIEF DESCRIPTION OF THE FINITE EL-
EMENT MODEL

In this paper a random field generator known as
the Local Average Subdivision Method (LAS) de-
vised by Fenton (1990) is combined with the power
of the Finite Element Method for modeling spa-
tially varying soil properties. The problem chosen
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Figure 1: Flow net through stochastic soil
for the 1-wall problem

for study is a simple boundary value problem of
steady seepage beneath a single sheet pile wall pen-
etrating a layer of soil. The variable soil property
in this case is the soil permeability k.

A typical flow net through a stochastic soil is
shown in Figure 1, which also indicates the gen-
eral boundaries of the problem under considera-
tion. The finite element program used for the so-
lutions of Laplace’s equation presented in this pa-
per is published in full in the text by Smith and
Griffiths (1988). In all analyses, a uniform mesh
of square 4-node elements was used with 60 ele-
ments in the z-direction (30 on each side of the
wall) and 20 elements in the y-direction. A time-
saving feature of square (or rectangular) elements
is that their conductivity matrices are easily com-
puted explicitly without the need for numerical in-
tegration. In this case assuming the permeability
of the i** element is k;, the symmetrical element
conductivity matrix is given by:
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During assembly of the global conductivity matrix,
a ‘skyline’ storage strategy was used together with
a Cholesky factorization approach (see e.g. Grif-
fiths and Smith 1991). The skyline approach ran
faster than conventional (constant band-width)
methods as well as giving substantial savings on
memory requirement.

3 BRIEF DESCRIPTION OF THE RANDOM
FIELD MODEL

Field measurements of permeability have indicated
an approximately lognormal distribution (see e.g.
Hoeksema and Kitanidis 1985, and Sudicky 1986).
The same distribution has therefore been adopted
for the simulations generated in this paper.
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Essentially, the permeability field is obtained
through the transformation

ki = exp{pink + omr 9:} (2)

in which k; is the permeability assigned to the it
element, g; is the local average of a standard Gays.
sian random field, g, over the domain of the i* gla.
ment, and i,  and oy are the mean and standard
deviation of the logarithm of k (obtained from the.
‘target’ mean and standard deviation px and oy,

The LAS technique (Fenton 1990, Fenton and Vap-
marcke 1990) generates realizations of the local ay-
erages g; which are derived from the random field g
having zero mean, unit variance, and a spatial cor-
relation controlled by the scale of fluctuation, g,
As the scale of fluctuation goes to infinity, g; be-
comes equal to g; for all elements ¢ and j — that is
the field of permeabilities tends to become uniforn
on each realization. At the other extreme, as the
scale of fluctuation goes to zero, g; and g; become
independent for all ¢ # j - the soil permeability
changes rapidly from point to point.

In the two dimensional analyses presented in this
paper, the scales of fluctuation in the verti
and horizontal directions are taken to be eq
(isotropic) for simplicity. Although beyond the
scope of this paper, it should be noted that |
a layered soil mass the horizontal scale of fluct
tion is generally larger than the vertical scale d
to the natural stratification of many soil deposits.
The 2-d model used herein implies that the ou
plane scale of fluctuatiori is infinite — soil propert
are constant in this direction — which is equivalent
to specifying that the streamlines remain in
plane of the analysis. This is clearly a deficiency
of the present model, however it is believed that
useful information regarding the variability of flow
quantities is still to be gained from the 2-d model.

4 SUMMARY OF THE RESULTS FROM SEE‘
AGE ANALYSES a

A Monte-Carlo approach to the seepage pmbt’(‘:‘
was adopted in which for each set of input stat
(g, ok, Bi) 2000 realizations were per formed. -
extensive set of parametric studies for the sm e
wall seepage problem has been reported by
(1993) of which a summary will be presented he




The main output quantities of interest in this prob-
lem are the total flow rate through the system ¢
and the exit gradient ¢.. Following the Monte-
Carlo procedure, the mean and standard devia-
tion of both these quantities were computed. The
flow rate results were presented in non-dimensional

form by representing it in terms of a normalized
flow rate ¢} where:

Q= Q/(Hm) (3)

and H is the total head loss across the wall, typi-
cally set to unity.

As the coefficient of variation of the input perme-
ability increases, Figure 2 indicates a consistent
fall in the expected value of the flow rate from its
deterministic value of @) =~ 0.5. This is especially
true for smaller values of the scale of fluctuation
f;, however as ) is increased the variation of Ha
is clearly tending towards the deterministic result
that would be expected for a strongly correlated
permeability field.
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Figure 2: Influence of random permeability
on mean flow rate

Figure 3 shows the standard deviation of the nor-
malized flow rate 0. For small 6 very little varia-
tion in ) was observed, even for high coefficients of
variation. This can be explained by the fact that
the poorly correlated field has little influence on
the flow rate computed from one realization to the
Tiext - the global response being almost determin-
istic in character. For higher values of 6, a more
variable flow rate was observed which tended to
the limiting value indicated for 0; = oo given by
€quation (4). The maximum point observed in the
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Figure 3: Influence of random permeability
on standard deviation of flow rate

og vs. logyo(o/px) relationship for all values of

@, remains an interesting and as yet unexplained
result.

L =
UQ = #_: det (4)

Figures 4 and 5 show the corresponding mean and
standard deviation of i,. As shown in Figure 4,
low values of the coefficient of variation retrieve
the deterministic value of ¢, = 0.128, however at
higher values the expected exit gradient tends to
increase for the majority of values of €. The ex-
ception to this rule occurs for the uncorrelated case
(8 = 0) when the expected exit gradient appears
to decrease. This rather surprising result is cur-
rently under further investigation although it may
relate to the ‘differentiation length’ used by the
backward-difference differentiation formula in the
calculation of 7.. It is not too surprising however,
that a quantity based on a first derivative is go-
ing to be particularly sensitive to fluctuations in
potential caused by random soil properties. For
0, = oo, i, should return to the deterministic
value.

Figure 5 confirms that the standard deviation of
the exit gradient steadily increases with the coeffi-
cient of variation of the input permeabilities. For
0, = oo however, o;, should return to zero for all
coefficients of variation, implying that there exists
a ‘worst-case’ scale of fluctuation in relation to the

reliability of exit gradient predictions.
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Figure 4: Influence of random permeability
on mean exit gradient
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Figure 5: Influence of random permeability
on standard deviation of exit gradient
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Figure 6: Comparison of means and the ef-
fective permeability (o /px = 2,0, = 2)
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5 EFFECTIVE PERMEABILITY

A useful measure of the expected flow rate thougﬁ
a random soil is to express it in terms of the effee.
tive permeability k. This quantity is defined as ¢
permeability which would give the expected flo
rate in a deterministic analysis with a constant gp

perfectly correlated permeability field. T

i

For a given set of n values, three mean permeahjl.
ities and the circumstances under which they are |
appropriate measures of the effective permeability
can be defined as follows: 1

Arithmetic k* =131 & 1-d paralle]

Geometric &9 = ([T, k)Y 2-d unbounc

B = (T, 1/k)

Figure 6 shows the relationship between the three
means and the effective permeability for the single
wall problem over a range of embedment depths,
The permeabilities have been normalized by divi
ing by pr. It appears that the geometric mean is
an excellent predictor of the effective permeability
even in 2-d bounded domains (see e.g. Gutjahr
al 1978), although there is a slight trend for i
effective mean to tend to the arithmetic mean f
short walls and to the harmonic mean for long,

Harmonic 1-d series

6 CONCLUDING REMARKS

The paper has presented results which form part
of a broad study conducted by the authors into th
influence of random soil properties on geotech
design. In this paper, random field methodology
has been combined with the finite element met
to study the flow rate and exit gradient due to
steady seepage beneath a sheet-pile wall embed
in a layer of random soil. The influence of spati
correlation of soil properties has been fully incol
porated through a scale of fluctuation parameter
8., which has been varied across a wide range ot
values.

For moderate values of the scale of fluctuation, the
expected value of the flow rate was found to fall
consistently as the coeflicient of variation of
input permeability was increased. For higher val-



ues of the scale of fluctuation, the normalised flow
rate tended to the deterministic value. The ge-
ometric mean permeability was shown to model
closely the effective permeability over the range of
confined 2-d problems considered. The exit gradi-
ent, being a first derivative of the potential field
at the exit point, was found to be particularly sen-
sitive to fluctuations caused by the random field.
This raised questions about the numerical differ-
entiation formula used in the calculation of ¢., and
this is currently a topic of further investigation.

Increased computer sophistication and recent de-
velopments in random field generation means
that this work will soon be extended to three-
dimensions, thus removing the need to assume per-
fect correlation in the out-of-plane direction.
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