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Abstract

A computer algebra package called Maple is used to generate exact expressions for
the stiffness matrix of a plane 4-node quadrilateral element. Tle expressions are con-
veniently stored in a subroutine library and run significantly faster than ‘traditional
approaches using Gaussian quadrature.

1 Introduction

The ‘raw materials’ for generation of an elastic element stiffness matrix in two-dimensions
are:

¢ The element type (4-node, 6-node, etc.).
¢ The strain conditions (plane strain, plane stress, etc.).
o The elastic properties (Young's Modulus, Poisson’s Ratio).

The nodal coordinates.

This paper uses the 4-node quadrilateral element in plane strain to illustrate the use
of a computer algebra system to generate exact expressions for the stiffness matrix.
Analytical expressions for the stiffness matrix of a rectangular four-node element have
been published by Hacker and Schreyer [1]. It is well known that this element’s stiff-
ness matrix is exactly integrated using four Gauss-points per element. This paper
describes how the stiffness matrix of a general quadrilateral element can be expressed
in closed form by expanding and simplifying the four terms in the numerical integra-
tion summation. The computer algebra svstem Maple [2] was used to help generate
the expressions.

Computer algebra svstems (C'AS) have considerable potential in the area of finite ele-
ment software generation. In particular, Bettess and Bettess [3] and Barbier et al [4]
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showed how the computer algebra system REDUCE (51 conld he used to automati-
cally generate shape {unctions for any finite element. ['he svstems usually have the
additional facility of being able to generate output 1n the FORTRAN programming
language; thus complex algebraic expressions can be coded without the usual risk ol
typographical errors.

The abilitv of CAS to simplify and factorise complex algebraic terms has limitations
however. so some of the expressions produced by the CAS had to be further simplified
by hand in order to arrive at a form suitable for publication.

2 Formulation

The element stiffness matrix k can be written as an integral (see e.g. Zienkiewicz [6])
of the form:

k= BTDBd(vol) (1)

Ve

where the stress/strain D matrix is:

E, £, 0 |
0 0 G

where the shear modulus is given by G = E£/(2(1+v)), with £ and » denoting Young's
modulus and Poisson’s ratio respectively.

For plane strain:

E(l1 —v) vE,
(1+v)(l=2v) '’ (1 —wv)

E]Z

B is the strain/displacement matrix.

The terms in the matrix B are derivatives of the shape functions with respect to global
coordinates. so the usual tranformations must be performed at each Gauss point. These
transformations and the notation used throughout this paper are consistent with those
used in the text by Smith and Griffiths [7].

2.1 A typical Maple program

This section gives a listing of a typical Maple program for computing the contribution
of a Gauss point to a particular term in the element stiffness matrix k. The term in k
is defined by the integers IROW and ICOL, and the Gauss point by the integers IT and
JJ. The listing below would compute the contribution of the Gauss point giver by (II
= 1, JJ = 1) to the term ky;.



DEE:= array(1l..3,1..3):SAMP:=array(1..2,1..2):
BTDB:= array(1..8,1..8):
DERIV:=array(i..2,1..4) :DER:= array(1..2,1..4):
COORD:=array(1..4,1..2) :JAC:= array(1..2,1..2):
JACLl:= array(1..2,1..2):BEE:= array(sparse,1..3,1..8):
with(linalg):

readlib(evalm) :

#

# Plane Strain

EL:=YM*(1-V)/(1+V)/(1-2%V):

E2:= VxE1/(1-V):

G:=YM/2/(1+V):

#
DEE(1,1]:=E1: DEE[1,2]:=E2: DEE[1,3]:=0:
DEE[2,1]:=E2: DEE[2,2]:=E1: DEE[2,3]:=0:
DEE(3,1]:=0: DEE[3,2]:=0: DEE([3,3]:=G:

#

COORD(1,1]:=X1: COORD[1,2]:=Y1:

COORD([2,1] :=Xx2: COORD([2,2] :=Y2:
COORD(3,1]:=X3: COORD[3,2]:=Y3:
COORD[4,1] :=X4: COORD[4,2] :=Y4:
#

# Assuming two Gauss points (NGP=2)
SAMP[1,1] :=1/3%%(1/2): SAMP[1,2]:=1:
SAMP[2,1] :=-SAMP[1,1]: SAMP[2,2] :=1:

# Enter Row and Column of stiffness matrix term
IROW:=1:ICOL:=1:

#

# Enter Gauss point term
I1:=241]:<2%

# i !

ETA:=SAMP[II,1]: XI:=SAMP[JJ,1]:
ETAM:=1/4*(1-ETA): ETAP:=1/4%(1+ETA) :
XIM :=1/4%(1-XI): XIP :=1/4%(1+XI):
DER(1,1] :=-ETAM: DER[1,2] :=-ETAP:
DER[1,3] :=ETAP: DER[1,4] :=ETAM:
DER(2,1]:=-XIM : DER[2,2]:= XIM:
DER[2,3] :=XIP : DER[2,4]:=-XIP:

#

JAC:=multiply(DER,COORD):
JAC1:=inverse(JAC):

DET:=det (JAC) :
DERIV:=multiply(JAC1,DER):

#
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# Form the B matrix
for M from 1 to 4 do

K:=2%M:
Li=K-1:
X:=DERIV([1,M]:
BEE([1,L] :=X:
BEE[3,K] :=X:
Y:=DERIV[2,M]:
BEE[2,K]:=Y:
BEE[3,L]:=Y:
od:

#

GP:= dotprod(col(BEE,IRDH),col(DEE,l))*BEE[l,ICUL]:
GP:=GP+dotprod(col(BEE,IROH),COl(DEE,Q))*BEE[Z,ICUL]:
GP:=GP+dotpr0d(c01(BEE,IRUH),Col(DEE,3))*BEE[3,ICDL]:
TERM:=GP*DET*SAMP[II,2]*SAMP[JJ,2];

#

subs (YM=100,V=1/4,

X1=0,X2=1/4,X3=4/10,X4=7/10,
Y1=0,Y2=75/100,Y3=85/100,Y4=5/100,") :

evalf(",7);

#

quit;

Substitution of the following nodal coordinates:

Node {%.%)

1 (0.00, 0.00)
(0.25, 0.75)
(0.40, 0.85)
(0.70, 0.05)

2
3
4

together with elastic properties £ = 100, v = 0.25 (plane strain), the following contri-
bution to &, {rom each Gauss-point is obtained:

Gauss point Contribution
coordinate
(0.4071, 0.6620) 3.296
(0.2534, 0.6104) 3.014
(0.5132, 0.2063) 25.162
(0.1762, 0.1713) 23.866
Total 55.338

2.2 Analytical Expressions

So as not to take up too much space. the expressions for kyy only will he given in
this paper. Very similar expressions however are obtained for all terms of the stiffness
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matrix. [aking into account both symmetry of the matrix and the relationship between
terms that can be obtained by simple rotation of nodal coordinates. it can be shown
that the six independent stiffness terms given by ki1, ko1, A3y kay, ks and kg are
sufficient to generate the other 58 terms of the element matrix.

All stiffness terms are of the form:

1

fe = ! {A?(E-Sl + Gs2) + fi{ E™s3 + Gsq) + A E"ty + Gia) + f2(E7ty + (-7'?54)}
2

3AZ — f2 3A5 - /3
(4)
where £* equals either £, or E, as indicated.
Ay = (z4—=22)(y3 — 1) — (23 — 21)(ya — ¥2) (5)
= twice the area of the element
and
fi = (o1 +23)(ya — v2) — (y1 + ya)(za — T2) — 2(x2ys — ay2) (6)
fa = (ya+ya)(za— 1) — (22 + x4)(ys — 1) — 2(Tay1 — 21Y3) (7)
The functions s, s,, 53, S4, t1, t2, t3 and t, depend on the nodal coordinates.
2.3 Term - kll
) il El (8)
s1 = 2(!!4—9‘2) (9)
Sq = 2(.’1?4 - EQ) (10)
53 = —31/2 (11)
54 "‘“52/2 (]‘2)
o= (ya—vs)? + (y3 — ya)* + (ya — 12)° (13)
ta = (23— 23)%+ (23— 7a)’ + (24 — 23)° (14)
ty = (ya—ya3)? —(ys—y2)° (13)
ty = (z4—13)*— (23— 22)° (16)
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3 Concluding Remarks

The stiffness matrix of a plane four-node quadrilateral finite element can be expressed
in closed form with the help of a computer algebra package such as Maple. A typical
term has been presented in this paper.

Although the expressions are quite long, they are comprised entirely of assignment
statements which when coded in a FORTRAN program will run faster than the con-
ventional numerical formulation. Initial indications are that the "analytical” approach
gives a four-fold reduction in CPU-time on a scalar machine.

Although the exactly integrated four-node element is not widely used. the techniques
used to generate the stiffness terms could easily be extrapolated to other types of
element matrix (e.g. mass), and higher order elements. Work is presently under way
to obtain expressions for matrices of more ‘popular’ elements, such as the four-node
element with selective reduced integration and the eight-node element with uniform
reduced integration.
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