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INTRODUCTION

The limit load of a soil mass can be determined numerically by the finite element method
which remains one of the most versatile approaches for analysing geotechnical problems. In the past
two decades, various strategies have been proposed for integrating the elasto-plastic rate equation.
Various iso-error maps have been produced so as to compare the accuracy of these methods. In this
paper, some of these methods are applied to the Prandtl problem and their accuracy and efficiency
comparéd.

The details of the mesh are shown in Figure 1. It consists of 8-node quadratic plane strain
elements. The element matrices are formed by using reduced integration. An elastic, perfectly-plastic
material is assumed. Two different yield criteria are used; namely von Mises and Mohr-Coulomb with
¢=0. An ‘initial stress’ approach is used and all the iterations employed a constant global stiffness
matrix, hence, a modified Newton Raphson method. The limit load of the footing is (m+2)C,. Since
the main emphasis is on the rate integration algorithms, the adequacy of the mesh has not been
considered.

The mesh had been analysed by the ‘viscoplastic’ approach found in Reference 1, which
ensures that global equilibrium is achieved. However, the various integration algorithms studied in
this paper will also maintain the consistency requirement, hence all the Gauss-points are kept near to
the yield surface within a tight tolerance. As a result, the solutions as well as the computational effort
are different from Reference 1.

In all the elasto-plastic integrations, an incremental elastic stress is predicted. If the resultant
stress causes yielding to occur, a ‘plastic’ stress is applied to bring the resultant stress back to the
yield surface, i.e., to ensure the consistency requirement is met. The position at which the plastic
stress is evaluated depends on the algorithm used and ultimately, affects the solution obtained.

METHODS OF INTEGRATING THE ELASTO-PLASTIC RATE EQUATION
Preliminary

In all the subsequent discussion, o refers to the unyielded stress at the start of a step, Ag, is
the incremental stress, G is the contact stress at which yield occurs and op is the stress obtained if
Wholly elastic response is postulated, i.e., ‘the trial stress’. The final stress is denoted as oc (Figure

2). a is the flow vector and occurs when the material is yielded (i.e.. ax, ag only ac). fx, fa, g and
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fc are the values of the yield funcuon.

Oritz and Popov(2) have shown that a number of the elasto-plastic integration algorithms can
be represented in the generalised form:

cc=0a+D(AE-Agy)
where Ae,=AN[(1-0)ap+0ac]
or Aep,=AM[a((1-0)0+80(C)] 0<6<1

Ae and Ag,, are the incremental total and plastic strains and AA is the plastic strain rate
multiplier, D is the stress and strain matrix.

(a) Forward Euler method

In this method(3) (8=0), the plastic stress is evaluated at the point where contact of the yield
:‘ surface occurs (Figure 2). The contact stress, Oa, is found by solving the equation f(ox+oAa,)=0
with (0<a<l).

In most cases, the contact point can be determined by iteration. In an elastic-perfectly plastic
1 material, its evaluation is made simpler as the yield surface does not change in size. An explicit
J‘ relation between the yield function f and o can be written for a von Mises material. Similarly, a linear
interpolation between fx and fg is sufficient to determine oin a Mohr-Coulomb material, Appendix 1.

Hence, the increase in stress is,
Aoc=DAe-AADay

a ATDAE

= - A [ o S —
Ace.-AADaj, where AA asTDan

The final stress is, oc=0x+aDAe-(1-a)AADap

Even though small load steps are used, the consistency requirement may not be met at
convergence. This always results in ‘drift’ from the yield surface®). If not corrected, too high a limit
load or too stiff a response is predicted. The ‘drift’ can be corrected along the normal of the yield
surface or along the radial of the deviatoric plane as in the von Mises material.

Another way to reduce the drift and obtain a better solution is to sub-increment the elastic
stress(®), With a sufficient number of sub-increments, the drift correction is not necessary. Howeven
it is difficult to determine the number of required sub-increments in advance. Sloan(®) used a two step
Euler forward procedure to estimate the error produced and hence to compute the required number of
sub-increments. In this paper, an empirical relationship is used to determine the number of sub-
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increments. It is expressed in a Fortran statement: ISTEP=INT(2O*£B~4-1) where O, is the yield stress.
Co

Clearly, the number of sub-increments depends on the size of the yield surface.

(b) Backward Euler method

An alternate position to work out the corrector stress is at point B (Figure 2) by putting 6=1
and avoids the necessity of computing the intersection point A. For an elastic perfectly plastic
material, the yield function is linearised around the current values of the state variables®) to obtain:

f=fB+§T—Ao
5o
fi
=fn- T — B
fg-Alag Dag, where AA anTDan

; : . fgDa
The increase in stress is, AG=Ag,- —B—b-
agTDag

[n general plasticity, the state variables which defined the current size of the yield surface have
to be included. The corrected stress will not lie on the yield surface at the trial contact point, iterations
are required to meet the consistency requirement (the closest point algorithm).

The final stress at convergence will not always lie on the yield surface and corrections used in
the forward method are similarly applied. However, that is not required for a von Mises material with
non-hardening under 3-D stress state as the method coincides with the ‘radial return algorithm’.

In the deviatoric plane, all the stress components can be represented by concentric circles for a
von Mises material under 3-D stress state, Figure 2. As a result, point C can be determined by the
radial joining point B and the axes origin on the deviatoric plane.

(o7
CC=rop, where r=—> 0<r<1

?

fB"'Go

Rice and Tracey(") suggested the mean normal method for a von Mises material with rigid
hardening. The average value of the contact stress Oa and trial stress op is taken and the consistency
(aa+ap)TAc 0

requirement results in 3 =0.

In a von Mises material with perfect plasticity and under 3-D stress state, this procedure
ensures the final stress lies on the yield surface and no Gauss-point level iterations are required.

RESULTS

The load-deflection curves are shown in Figures 3 and 4 whereas the number of iterations are
detailed in Tables 1 and 2. The forward Euler method predicts a higher limit load and surprisingly,
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more total number of iterations. A more satisfying solution is obtained when sub-incrementation 1s
used. Another analysis (which is not shown) uses 10 equal sub-increments and the results are
identical to the one presented here. If only 3 sub-increments are used, not much improvement in the
solution is gained. All the backward methods produce (almost) identical results and the total number
of iterations are less than the forward method. In column 3 and 5, the bracketed values represent the
analyses with which a certain amount of the bodyloads are carried forward to the next load step. The
magnitude depends on the ratio of the sizes of the load step. In some steps, the amount of iterations is
reduced by a half.

In another series of analyses (Figure 3b), the size of the load steps is doubled. Again, the
superiority of the backward methods and the importance of sub-incrementation are shown. Whereas a
stiff response is predicted by the forward method, the others evaluate an acceptable limit load.
Moreover, the deflections obtained at the intermediate steps (and final one) are similar to the previous
series of analyses.

The analyses are then carried on by using a Mohr-Coulomb yield criterion (with ¢=0). Similar
observations can be made (Figure 4). To eliminate numerical problems, a higher Poisson ratio of 0.4
is used with this series of analyses.

CONCLUSIONS

Small load steps are always recommended in elasto-plastic analyses to achieve convergent
solutions. It appears that it is not a stringent requirement to follow. Convergence depends on the
numerical procedure used and moreover, the consistency requirement must be enforced at each Gauss
point. In this paper, a simple yield surface is used which results in simpler implementation of the
backward algorithms. In general plasticity, however, the rate of the flow vector is required (which
may not be possible to obtain) in which case, forward methods may be preferred with sub-
increments. An empirical relationship has been used to find out the number of sub-increments in an
elastic and non-hardening plastic material and proved to yield acceptable results.

The implementation of the above algorithms into a hyperbolic soil model is being carried out
and will be reported when the results are available. Recently, work in which the stiffness is updated
at each iteration, i.e., the full Newton Raphson approach, attention has been focused on determining
a 'consistent' stiffness matrix(8) as opposed to the standard matrix so as to maintain a quadratic
convergence rate of the solution. The standard method has been tried but more effort is required to
implement the former. It is hoped to publish the results in the near future.
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For a von Mises material in plane strain, & can be obtained from the expression(?):
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APPENDIX 1

-3b+\ 9b2-12a(3¢-0,2)
= 6a

where a=%(As,“,2+Asye2+z§;s,5,,2)+A1:,q,.32

b=SxAch+SyASye+SZASze+2’txyA‘nye

c=%(s,‘z-i-sy2+szz)+4:,w2

Sx, Sy and s; are the deviatoric stress components.

(Only the positive value of o from the above equation is used.)
For a Mohr-Coulomb material in plane strain, o is determined from a linear interpolation of fx and fg
to yield an accurate contact stress,

fg
~fp-fx

o
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Load fom | Forward- | F Oé“’m:;d" Mean | Backward- | Radial
(kN/m2) | Reference Euler method Normal Euler Return
1 method I:gc?‘r;ggts method | method | method
200 2 2(2) 2 2(2) 2
300 19 19 (10) 20 20 20 (20)_ 20
350 29 29 (27) 39 39 43 (41) a3
400 a7 _ 46 (36) 59 60 64 (49) 64
450 67 64 (49) 78 78 83 (60) 83
430 01 82(57) 109 111 116 (34) 116
500 100 104 (66) 130 132 136 (39) 136
510 115 113 (55) 144 148 150 (79) 150
515 145 126 (64) 157 161 166 (30) 166
520 250 136 (52) 250 250 250 (250 250
525 152 (45)
530 223 (124)
535 250 (250)
Table 1a Number of iterations required with small load steps (von Mises material).

Load | from | Forward- | FO¥% | Mean | Backward-| Radial

(kN/m2) | Reference Euler method Normal Euler Return

1 mCthOd with sub- mcthod

increments

method

method

2 2 2

400 32 32 58 57 60 60
500 53 53 130 123 138 138
510 250 65 144 148 145 145
520 79 250 250 250 250
525 04

530 110

535 119

540 125

545 142

Table 1b Number of iterations required with large load steps (von Mises material).




Load Forward- F Oéflgd' Backward-
(kN/m?2) Euler method Euler
with sub-
method icrements method
2 2

300 15 15 16
350 34 36 37
400 48 55 58
450 61 69 73
480 88 100 104
500 104 113 121
510 118 124 127
515 122 143 147
520 141 250 250
525 250

Table 2a Number of iterations required with small load steps (Mohr-Coulomb material).

Forward-

Load Forward- Euler Backward-

(kN/m?) Euler method Euler
with sub-
method pomm— method
C200 2 2

400 a4 52 52

500 80 120 124

510 106 124 128

515 118 144 146

520 123 250 250

329 136

530 170

535 250

Table 2b Number of iterations required with large load steps (Mohr-Coulomb material).
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Applied pressure (kN/m?2)
u=v=0

point X ‘ I } T

E
L2l
u=0
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4
ﬂ u=v=0
12m
a g
C,=100 kN/m? E=10E4 kN/m?
v=0.3 (von Mises material)
v=0.4 (Mohr-Coulomb material)
Figure 1 Details of the finite element mesh
.c.z
fg>0 (inadmissible)

-0y -0y

Figure 2 Various locations for the integration of an elastic perfectly plastic

von Mises material shown on the deviatoric plane




Figure 3 Load deflection curves at point X for a von Mises material
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Figure 4 Load deflection curves at point X for a Mohr—Coulomb material
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