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SUMMARY .
is described.

value problems is feasible.

Experience of evaluating a typical double~hardening medel for scil on various non-cyclic stress paths
Loose and dense materials following drained
The stress—strain response is embedded within a finite elem

(including K,) and undrained paths are dealt with.
ent program so that direct application to boundary

Remarks are made about potentially interesting problems which could benefit from

such complicated treatment and about the relationships between "sands" and "clays".

INTRODUCTION

Recent work on constitutive models for soil has
been concentrated on the description of behaviour under
cyclic loadings, for example {1). This has obvious
potential application to the prediction of soil
behaviour in earthquakes but it seems to be a paradox
that such complicated boundary value problems are being
considered before any significant examination of the
response of soil masses under non-cyclic conditions.

At a recent workshop (2) some twelve constitutive
models for soil were compared over various simple
stress paths applied to elements of "kaolinite",
"sand", "clay X" and "clay Y". Even these test
conditions were quite restrictive in that only the
kaolinite was examined in the undrained state whereas
the others were all fully drained. Nevertheless the
predictions of the twelve models were quite variable.
What emerged was that for many practical purposes a
rather simple model such as that of Duncan and Chang
(3) is quite adequate. Under similar conditions the
authors' preference would be for a simple elastoplastic
model, eg. Griffiths (4), but this is a matter of
detail.

What is really required in practice is that
problems be identified in which the use of such simple
models would seriously fail to account for the main
Physical phenomena under investigation. An attempt to
list some of these has recently been made (5) in
relation to boundary value problems invelving sands.
For these special situations a typical double hardening
model, Molenkamp (6), has been implemented and shown +to
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account for the effective stress—strain-volume change i
(porewater pressure) response of dense sand. The
model is closely allied to other double hardening Ih
models, eg. Lade (7), but does not appeal to kinematic |
hardening, eg. Ghaboussi and Momen (8) or Mroz and St
Pietruszczak (9). Nor is it based on "critical state"
concepts, eg. Nova (10).
In the present paper, previous results for dense
sand following mainly drained stress paths are
augmented by results for loose sands and for undrained
stress paths. The K, condition is also investigated. I
A feature of the results presented is that the |
governing equations were integrated within a typical
finite element program so that rapid extension to the
solution of boundary value problems is feasible.
In the next section, the essential features of
the model will briefly be reviewed, and in the
subsequent section the finite element implementation
will be outlined. Thereafter the results for the
various materials and stress paths will be discussed.

SUMMARY OF THE MODEL

For a detailed description, the interested reader
should refer to Molenkamp (6), but the basic features |
will be described here. ‘ |

In its fullest form the model requires 21 |
parameters for its definition, but due either to lack
of data or insufficient quality data, the values
assigned to several of the parameters cannot be
established with great confidence. In the absence of
highly detailed experimental observation, it has been




noted (5) that the number of "important" parameters
could be reduced to 10 or even 4.

The model used in the present work is typical of
the double hardening type, and has many points in
common with the models of Lade (7) and Vermeer (11).
The present model has greater versatility in its
ability to make fine adjustments to the stress—strain
law, but these are at the expense of more governing
parameters, and greater reliance on high quality test
data.

The model uses concepts of plasticity theory to
generate irrecoverable strains during loading and has
utilised curve fits to the work of Rowe (12,13),
Tatsuoka and Ishibara (14), Lade (7), Vermeer (11) and
Yamada and Ishihara (15).

Increments of strain are split into three
components: elastic, isotropic plastic and deviatoric
plastic, and the number of parameters required to
describe these are in the ratio 3:2:16 which reflects
the complexity of shear—dilatancy coupling in granular
soil, Although the present model, in line with
current trends, uses two distinet yield surfaces for
isotropic and deviatoric loading it may be that a
single smooth surface could cope with both effects as
has been suggested by Smith (16). It should be
remembered that although yield is treated in a similar
way mathematically on both surfaces, failure of the
soil can only be caused by shear where the failure
surface represents the outermost shear yield surface.
Isotropic compression alone, although causing yield,
can never result in failure; indeed it strengthens the
so0il,

Although the parameters required for the model can
all be obtained from triaxial tests, all formulations
are in terms of invariants to facilitate use with
general stress states. s

For example the isotropic and deviatoric stress
invariants are respectively:

s = (6, +6, +6,) (1)
AI; 1 2 3
i 2 2 2,3
g - o g - &
4 (6] o3, -6,)%(S, - 6D (2)
The strain invariant counterparts v and ¥* are of the
same form except with principal strains 19 £, and€,

replacing the principal stresses.

Elastic Model

The non—-linear elastic model is based on a
constant Poisson's ratio and a stress—dependent shear
modulus after Vermeer (11). This leads to the
isotropic stress and elastic strain being related by
the power law:

e s AP
v s A(—) (3)
P4
where A; AP are model parameters and Py is atmospheric
pressure used to non-dimensionalise the equation,

Plastic Model

Both plastic strain increments, namely dtiq due to
the compressive model, and dej; due to the deviatoric
model are calculated by the general expression for
plastic strain:

dF

¥

50‘1 i Bd'kl dsf‘l
d-ﬁij = T (4)
in which F = 0 yield surface
G = 0 potential surface
H hardening parameter
Gij gtress tensor.

The plastic compressive model uses the spherical
cap yield surface proposed by Lade (7) with an
associated flow rule. The governing parameters are
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best represented through isotropic loading and
unloading tests with the elastic strain components
eliminated to give:
BP
vc = B(_S_)
Pa
The level of complexity intensifies in the plastic
deviatoric model. . In the triaxial plane, the failure
surface passes through the origin and is curved,
reflecting the reduction in friction angle with
increased isotropic stress level. The equation of this
surface is given by:
t g, P
£ b
(=) = e(=>)
Pa Pa

(5)

(6)

where if CP = 1, as for very loose materials, a
straight failure surface is obtained analogous to Mohr—
Coulomb,

In this case:

C = 24’5 sin
=3 Z sing

¢ —=2C—)

202+ C -

The failure surface represents the outermost of a
family of yield surfaces of similar shape.

The potential surfaces are non-associated and of
the stress-dilatancy type, eg. Rowe (12), thus the
deviatoric model is capable of giving compressive
strains for shear stress levels below the threshold
value at which dilation commences. The threshold shear
stress level, equivalent to a mobilised friction angle
#f, varies with isotropic stress level, but always lies
in the range:

fu £ by € By - (9)
This implies that for quartz sand for example, gp = 30°
but can vary by up to about 7°.

The yield and failure surfaces in the pi-plane are
as those described by Lade and Duncan (17), whence

(7)
(8)

or arcsin(

3
5
Fexta2]=f=0 (10)
3
where I1 = 35
I3 =616,6,

and fj is a measure of the extent of the yield surface.
At failure, this surface agrees with Mohr-Coulomb
in triaxial compression where

Ii E 2 3
(=) )= (—L'-K )

and K, = tan®(45° + 4/2).

In triaxial extension, however, it predicts a
higher stress ratio at failure than Mohr-Coulomb.

The potentials in the pi-plane are similar in
form to those proposed by Lade and Duncan (17) but a
parameter RT enables a modification to be made to their
shape. When RT = 1, Lade and Duncan's original
potentials are retrieved, whereas RT = Ot gives a
circular surface in the pi-plane., In the present work,
BT = 0.3 has been used in line with experimental
observations of Yamada and Ishihara (15).

(11)

FINITE ELEMENT IMPLEMENTATION

With a view to the eventual solution of boundary
value problems, the performance of the soil model was
observed by incorporating it in a finite element
analysis. In the present work, a single two-
dimensional element was considered. As seen in Fig.l,
the element was a four-noded quadrilateral taking
account of the axial symmetry of a triaxial sample and
its plane of symmetry about the mid-height. For
simplicity, the dimensions of the element were taken
to be unity in both the radial and depth directions.
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Fig.l

For the modelling of K, stress paths, an additional
lateral restraint was necessary as seen in Fig.1(b) to
maintain the zero lateral strain requirement.,

Integration over the element, such as that
required in the stiffness formulation was performed
using two=point Gaussian quadrature which amounts to
four integrating points per element. Although this
level of quadrature would be "exact" for the four-noded
quadrilateral element in plane strain, this is not ‘the
case in axisymmetry due to the singularity that occurs
in the strain/displacement relation as r =% 0, A
three—point scheme, for example, will give a greater
stiffness in axisymmetry than the two-point scheme, but
this did not make a significant difference in the
present work.

A1l the results presented in this paper were
obtained using load (or stress) controlled tests. That
is to say the stress path to be traversed was known in
advance where the loads ‘to be applied could be treated
as input data. The results obtained were the
displacements and strains generated by the loads. A
typical run would therefore involve the selection of
a stress path, the reading in of the initial stress
state, and the calculation of the strain increments
(used to update the total strain) generated by cach
load increment.

Typical stress paths that can be considered are as
follows:

(PC) Passive Compression - Constant cell pressure
Increasing axial stress
(PE) Passive Extension - Constant axial stress
Increasing cell pressure
(AC) Active Compression - Constant axial stress
Falling cell pressure
(AE) Active Extension - Constant cell pressure
( Falling axial stress
CR [
) g;zzzant Stress = 61ﬁ§3 = constant
1
(c) gﬁ:::ﬂt Menn -6';. + 263 = constant.

The nodal forces that must be applied to reproduce
any of the above stress paths should be given some
consideration, In Fig.2, an axisymmetric element which
bas finite internal and external radii, is subjected to
increments of stress As, and DS, in the vertical and
Tadial directions. It can be shown that for thig
¢lement, the consistent nodal forces equivalent to
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these uniform stresses are given by:

As Gt ‘ (12)
Fvl =Q0s (2r0 - rf)
{7 EW)
sz :Ao’z e (Jro + 2rf) (13)
(z, =2z )
23 0
F F = (14)
HE =y b —
where these forces act over one radian.
In the present work where
T = E s o, T, = Zp = 1,
these expressions simplify to:
Fy, =bs,/6 (15)
F, =F, =)hs /2 (17)
Ry T r

The solution algorithm involves re-calculating the
structure stiffness matrix at each load step due to
the stress—strain matrix D being itself a function of
stress. Thus the method amounts to a tangent modulus
approach with simple Euler extrapolation at each step.
Errors due to this simple numerical technique were
checked at all times by observing the influence of load
step size on computed results.

The following structure chart shows the main logic
flow of the solution method used here. As stated
previously, in stress controlled tests the portion of
stress space being traversed is known in advance. For
example, in Fig.3 a "PC" test would require
incorporation of both plastic matrices, whereas an
"AC" test would only require the plastic deviatoric




read in model parameters,
initial stress state,
required stress path.,
Put all other matrices to zero

For each load (stress) incrementa__lj

For each Gauss point

Add half of the increments to the
existing stresses

Form the non-linear elastic
stress/strain matrix D = D€

Is the cap
yield surface
violated (regions 3 and 4)?

Yes No

Form the plastic compressive
stress=strain matrix Q?C
and subtract it from D

2 =D -2

Is the shear
yield surface
violated (regions 2 and 4)7

Yes No

Form the plastic deviatoric
stress strain matrix de
and subtract it from D

D=p - p

Store the D matrix

Form the strain displacement relation B
at that Gauss point

Form B' D B.r, multiply it by its
quadrature weighting and add into
the element stiffness matrix K

Solve for noedal displacement incrementsé& in
4r = k3

[ B
For each Gauss point

Form the strain displacement relation B
Obtain strain increments
8% - 3§
Retrieve the D matrix
Obtain the stress increments
bs _ pas

Update strains and stresses

r
19 i

Update displacements
4 = d+8

Print results
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YIELD AND FAILURE SURFACES IN STRESS SPACE

Fig.3

matrix, the cap not coming into play. Triaxial
unloading on the other hand would use the non-linear
elastic matrix only,

In more complicated boundary value problems, the
direction and the extent to vwhich a particular stress
inerement at a given Gauss point has violated a yield
surface will not be immediately apparent. Extra
calculation is then necessary to establish the region
of stress space that is being traversed. If it is
found that a particular stress probe has only
partially violated a yield surface, the magnitude of
the plastic stress-strain matrix concerned should be
reduced proportionately.

DRAINED STRESS PATHS

This aspect of the model behaviour has been
considered previously (5) in some detail and so is
only mentioned briefly here {Kb conditions are dealt
with separately below), Typical results are shown in
Fig.4 for medium dense sand in triaxial tests at
varying cell pressure. In terms of stress ratio, the
higher cell pressures 'weaken' the soil causing
suppression of dilatancy and the tendency for dense
material to behave more like loose. 4n aspect of the
behaviour of sand which is extremely important is
illustrated in Fig.5. When compressed at constant
stress ratio, dense sands decrease in volume for low
stress ratios but incresse in volume for higher stress
ratios. This has vital implications for "density
hardening" models such as "Cam clay" because clearly
dense sand can "density soften" although in any other
measure of work it is hardening. For this reason the
authors reject "Cam clay" as a useful basis for a
general description of soil (16).

UNDRAINED STRESS PATHS

This is a greater potential area for the use of
the more complicated soil models. Small perturbations
in the porewater pressures in loose undrained sands
(due to upward percolation of water, small impacts
ete) can cause the soil strength to decrease
essentially to zero ("ligquefaction")., Some undrained

stress paths for very loose sand are shown in Fig.6.
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Fig.6

Here the failure surface coincides with the 5cv line
and no dilation occurs. Thus the soil hag no reserve
of strength to withstand the greater strains caused by
any increase in porewater pressure. Fig.7 shows the
drained and undrained responses of the same soil in
triaxial tests at a cell pressure of 100 LN/m2.

O3 = 100 kN/m?

a, Very loose

a 1 i 1 1 1

1 2 3 4 S Z%
DRAINED AND UNDRAINED STRESS/STRAIN BEHAVIOUR

Fig.7

Contrasting behaviour for medium dense sand is
shown in Figs.8 and 9. Fig.8 shows the strengthening
stress paths followed by undrained specimens and Fig.9
shows that in the absence of cavitation or attainment
of critical confining pressure, the undrained specimen
of medium dense sand would have a higher strength than
its drained counterpart.

These computations for undrained soil were
conducted by adding a "large" bulk stiffness to the
effective soil stiffness matrix in the usual manner.
The response is insensitive to precisely how large the
added bulk stiffness is.

'/p.n
fallure surface
4L =
Ik
5E ]
fu
200
1
Q i ' i 1 1
1 4L 7

? S/m

UNDRANED STRESS PATHS FOR MEDIUM DENSE SAND

Fig.8
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K, STRESS PATHS

An important feature of soil is its behaviour in
conditions of consolidation or swelling under zero
total lateral strain., In early treatments such as
Wnodified Cam clay" attempts were made to deal with the

condition by plasticity formulations alone whereas
the reality invelves a complex interaction of elastic
and plastic strains., The double hardening elastic—
plastic model should therefore be capable of
describing K, behaviour. §

Results of calculations for three soil demsities
are shown in Fig.10. It can be seen that the
predicted responses are reasonable, with Ky increasing
as the soil gets looser.

Eh_ Loose
Pa
¥ Medium
SF Dense
CI 1 1 1 1 L} 1 1 1 L 1
5 10 Gbﬁh

KO-TESTS AT DIFFERENT DENSITIES

Fig.10

Results for dense. sand are replotted in different ways
in Figs.ll and 12, PFig.ll agrees well with the shape

of publighed curves from laboratory tests while Fig.l2
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KO LOADING / UNLOADING ON DENSE SAND

Figoll

Loading

D 1.0

VARIATION IN KO FOR DENSE SAND

Fig.12

shows the rather dramatic increase in K, on unloading,
consistent with the known properties of overconsolidated
soil. -

REMARKS AND CONCLUSIONS

The capabilities of a typical elagtic=double
hardening plastic model, originally developed for
sand, have been further explored. It has been shown
that the response of the model is reasonable for the
range of locse to dense sands in various drained and
undrained stress paths. Since the stress-strain
equations are embedded within a finite element progrally
extrapolation to boundary value prohlems is feasible.
However a priority is to establish which boundary
value problems would benefit from such a detailed
treatment. The writers believe that mosv problems

. involving drained soils can be satisfactorily




analysed using simpler models, eg. (3) or (4).

However, the K, results presented in this paper could
not be reproduced using the simpler constitutive laws.
Therefore, some problems of forces on buried structures
adjacent to a loaded structure could be of interest.

The primary source of interesting boundary value
problems lies in the area of undrained behaviour.

Here the ability of the refined model to predict
porewater pressure changes accurately could be of great
value. This is impossible by the methods in (3) for
example, in which one would have to resort to a total
stress approach.

It will be clear that the predicted behaviour of
loose sand is similar in many ways to that of normally
consolidated clay. However, since no appeal is made
to density hardening in the present model, it can be
used for locse and dense sands and affords the
possibility of dealing with normally and
overconsolidated clays as well,
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