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ABSTRACT

Modelling of soil/structure interaction using
finite element analysis often requires the use of
'interface' elements. Much discussion can centre
around the best type of element to use and the
constitutive behaviour to be employed {e.q. rigid
plastic, elasto-plastic, adhesive, frictional). Even
when a decision is reached, the implementation of such
elements ig at best inconvenient and at worst can lead
to numerical difficulties. This paper discusses
methods of modelling slip without actually using
specialised elements. Perfectly smooth conditions are
achieved by uncoupling and orientating the freedoms
parallel to the proposrd interface direction.
Perfectly rough conditions can also be modelled using
the same mesh provided it s sufficiently refined.
This leads to upper and lower bounds on the actual
behaviour corresponding to a finite amount of adhesion
or friction. Two rather confined axisymmetric
problems are considered to demonstrate the method.
Firstly, a cone and, secondly, a laterally loaded disc
are both pushed unttl ultimate conditions are
reached, The latter example involves Fourier
expansions In the tangential direction. Results
obtained from both cases are compared with existing
'analytical' solutions.

INTRODUCTION

Numerical modelling of problems in which interface behaviour is
considered important lnvolves the use of specialised thin elements (e.g.
Ghaboussi et al (1], Xatona [2], Desai et al [3]). Several different
kinds of interface mlements have been proposed and tested successfully in
boundary value problems. Other authors {e.g. Pande and Sharma (4],
Griffiths [5)) have shown that even the Familiar 8-node quadratic element
with reduced integration, performs well as an interface up to quite high
aspect ratios. A feature common to many problems involving surface
roughness in foundation fngineering {(e.g. retaining walls, footings,
culverts and buried structures) is that the range of solutions going from
perfectly rough to perfectly smooth is not very great. This is
particularly true of 'adhesive' types of slippage appropriate to
soll/structure interaction involving undrained clays.

The magnitude of passive earth pressure for varying roughness
illustrates this polnt well - far an undrained clay ( ¢ = 0), the rough
value is 30% higher than the 'smonth' value, whereas for a cohesionless
soil with 4" = 40" say, the increase is greater than 150% [6]. Clearly,
correct modelling of interface effects is more important in the latter
case. The fact remains, however that accurate measurements of the
adhesion or friction angle between soil and structure is difficult in
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practice. Furthermore, the effects of progressivity and the varying
levels of mobilisation of the friction or adhesion at different locations
along the interface add to the uncertainty.

This paper proposes that the range of possible solutions for interface
Problems should firstly be established by considering perfectly rough and
perfectly amooth condltions in a numerical model. The renulta glven hy
these two analyses then represent the upper and lower bounds within which
all actual results must lie. Provided this range is not too great,
further examination with speclalised elements should Prove unnecessary.

Rough conditions are modelled using a conventional Finite element
analysis in which soil and atructure are 'tied" together at the nodes,
Provided the mesh is reasonably refined, failure along the 'interface' can
then be detected using a conventional plasticity algorithm along the row of
Gausg-points within the soil closest to the structure. Smooth conditions
are modelled by uncoupling one of the freedoms on each side of the
interface (for 2-D problems) and if necessary, re-orientating them to be
parallel to the proposed interface direction.

UNCOUPLING AND REORIENTATION OF FREEDOMS

The method is directly analogous to that adopted in gimple structural
analysis when an internal pin is placed within a loaded frame (Smith and
Griffiths [7]). In such a case, different amounts of rotation for each
member attached to the pin are allowed to occur., A perfectly smooth pin
is modelled by this methed, and no moment can develop on either side.
Extrapolating this approach to 2-D continuum analyses implies that in order
to reproduce a smooth interface in the example shown in Figure 1,
freedoms parallel to the interface direction must be uncoupled whereas
freedoms normal to the interface are 'tied' in the conventlional way. No
shear stregses will be able to develop along the ‘'interface’ thus smooth
conditions are reproduced, but separation is not allowed. A more detailed
discussion of this method, and a subroutine for performing the
transformation is provided by Griffiths [8].
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SMOOTH CONE PUSHED INTO COHESIVE S50IL

The mesh shown in Figure 2 is the same as that adopted for plane
strain analysis by Griffiths [8] and uses 8-node quadratic elements with
'reduced' integration. Freedoms at nodes along the cone/soil interface
were uncoupled and transformed in a 8imilar way to that shown in Figure 1.

The cone was displaced vertically into the soll, which was agsumed to
behave as an elastic-perfectly plastic (Tresca) material. AL convergence
after each displacement increment, the reactions at the displaced nodes
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were back-figured from the equilibrium stress state. The reactions (T)
were converted into a dimensionless factor N, as follows -
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Fig. 2 Mesh used for cone analysis

where R

Su

cone radius
undrained strength of soil

The estimated N_ value at fallure for each case is shown plotted against
cone angle in ngure 3. Also shown on this figure ig a proposed closed -
form solution [9] which indicates a minimum value of W corresponding to a
cone angle of 52.6°, This minimum is not observed by the finite element
solution presented here, neither was it detected by Willson [10] using
genuine interface elements.

Displacement vectors at failure for both a rough and smooth 90° cone
are given in Figure 4, The mechanisms are clearly quite different, In
the smooth case, the soil is pushed away from the cone at right-angles from
its surface, whereas in the rough case the soil is dragged down vertically
with the cone.
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Fig.3 NC at failure vs. cone angle
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Fig.4 Rough and smooth displacement vectors at failure (90° cone)
AXISYMMETRIC BODIES SUBJECTED TO NON-AXISYMMETRIC LOADING

The second example involved a stiff disc pushed laterally into
cohesive material. Although the particular case considered in this paper
amounted to plane strain conditions with only radlal and tangential
movement permitted, a different algorithm was used involving Fourier
expansions in the tangential directions.

The algorithm is suitable for axisymmetric bodies subjected to non-
axisymmetric loading, and in many cases will be cheaper to run than a full
3-D analysis. For elastic analysis, applications to structural
configuration were described by Wilson [11] and later by Zienkiewicz
[12}. Still in the elastic domain, analyses of laterally loaded piles
were considered by Suen [13) and Randolph [14]. An elastic program to
solve problems of this type has been published by Smith and Griffiths {7].

Non-linear analyses using the Fourier approach were described by
Meigsner [15), but the first attempt to explain the workings of the
algorithm was made by Winnicki and Zienkiewicz [16] in the context of
viscoplasticity. Further development of this latter approach was reported
by Barton and pande [17]. More recently, a modular program for Fourier
analysis of elasto-viscoplastic materials has been developed by Griffiths
[18] and implemented in a laterally loaded foundation problem [5].

For problems involving ¢ =0 materials, a considerable saving can
be made in computer time and s orage due to (anti-) symmetry of all the
displacement component distributions about the 90° axis., It was shown [18]
that the number of harmonics required for such materials depends on the
number of angular sampling points in the range 0 < @ < 180°.

If the number of angular sampling points ia NANG (odd), then the
number of harmonics NHAR is given by -

NHAR = m’_ﬁ_z:_‘ (2)

Using odd-numbered harmonics only, this reults in a Fourier series
function that passes exactly through the discrete values at the NANG
locations. This only occurs [18] if amplitudes a; are found using the
Repeated Trapezium Rule to evaluate integrals of the type -

;)

For Mohr-Coulomb materials, or materjials in which no tenaion is
allowed to develop, even numbered harmonics must be incorporated (including
‘zero'). Analyses involving these types of materials will form the basis
of a later publication.

m
a, =2 [£(0) cosioan (3
o
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LATERALLY LOADED DISC IN COHESIVE MATERIAL

An elastic analysis of this problem was performed initially for
comparison with closed form solutions (e.g. Baguelin et al [19]). The
mesh at the top of Figure 5 represents a radial plane of the problem under
conaideration for a 'rough' interface. The disc was displaced radially on
a 1at harmonic into the anil medium and the displacement profile in front
of the disc at increasing radial distances is shown. The closed form
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Fig.5 Radial displacements in front of rough disc
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Fig.6 Elastic displacement vectors (rough disc)

solution [19] is also included in this figure for comparison and all
elastic properties are given in Figure 7. iUnfortunately the elastic
response of this configuration is a function of the radial distance of the
rigid boundary. As this radial distance inrreases towards infinity, the
reactions (T) that would be computed for a given displarement tend tn
zern.  Te displacement vectors generated in the elastic soil by movement
of the disc are shown in Figure 6 and the effects of the boundary are
clearly seern.

The response changes dramatically when the soil is assumed to behave
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as an elastic/Tresca material as noted by Lane [20]. The disc is displaced
incrementally into the soil and the reactive forces back-figured from the
converged stress state. After gsome parametric studles, it was decided
that NANG = 5 (NHAR = 2) gave sufficiently accurate solution for 'Tresca’
materials. Failure was indicated by a levelling-off of the reactive
forces. The attenuation of radial displacements in front of the disc for
the elasto plastic solution is clearly seen in Figure 5.
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Fig. 7 Load/displacement response

The 'smooth' case was easily implemented by uncoupling the tangential
displacement components correspnding to the soil and disc at nodes along
the interface. The complete load/displacement response computed for both
the rough and smooth cases is given in Flgure 7. The agreement with the
characteristizs solution of Randolph and Houlsby [21] is seen to be quite
acceptable. The solution obtained for the rough case could probably be
improved further by refining the mesh close to the interface.

The displacement vectors at failure given in Figure 8 for both the
rough and smooth cases (20] show very well the rotational nature of the
plastic flow. As would be expected, the 'rough' mechanism is the more
extensive of the two, but in both cases, the attenuation of displacements
is such that a highly localised mechanism is visible.

CONCLUSIONS

Finite element analyses of smooth interface behaviour have been
performed on two axisymmetric problems of soil/structure interaction. The
first example involved a cone pushed into a cohesive soll and required a
transformation of freedoms to be parallel and perpendicular to the
interface direction [B]. The computed peak resistance of the soil for a
variety of cone angles did not reproduce a minimum predicted by a 'closed
form' solution (9]. The reason for the discrepancy is not clear, but it
is suggested that the closed form solution may be physically unrealistic
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for small cone angles.

The second example involved a disc pushed laterally into a cohesive
soil. This analysis was performed using a flnite element discretisation in
radial planes only, with tangential variations modelled using Fourier
series expansions. The smooth case was easily reproduced in this case by
uncoupling tangential freedoms along the interface. Close agreement with
cloard Form snlutiona [21] for hoth rough and smooth conditions was
achleved using 2 harmonics with 5 angular sampling points. Plots of
displacement vectors at failure showed highly localised mechanisms, hence
the collapse loads were insensitive to the finite element boundary
proximity.
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