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ABSTRACT: The paper initially reviews some established probabilistic analysis techniques,
such as the First Order Second Moment (FOSM), and the First Order Reliability Method
(FORM), and then goes on to describe a more rigorous approach called the Random Fi-
nite Element Method (RFEM) in which random field and finite element methodologies are
merged. The results highlight cases in which proper modeling of spatial correlation is im-
portant, and illustrate this through a simple example of passive earth pressure.

1. Introduction
Many sources of uncertainty exist in geotechnical analysis ranging from the material pa-
rameters to the sampling and testing techniques. This paper addresses the question of how
variable material parameters impact the safety and, ultimately, the economics of geotechni-
cal design.

Traditional geotechnical analysis uses the “Factor of Safety” approach in one of two ways. In
foundations analysis for example, Terzaghi’s bearing capacity equation leads to an estimate
of the ultimate value, which is then divided by the Factor of Safety to give allowable loading
levels for design. Alternatively, in slope stability analysis, the Factor of Safety is included by
reducing the shear strength of the soil prior to performing a limit equilibrium calculation.
Either way, the Factor of Safety represents a blanket factor that implicitly includes all
sources of variability and uncertainty inherent in the geotechnical analysis.

The approaches described in this paper attempt to include the effects of soil property vari-
ability in a more scientific way using statistical methods. If it is assumed that the soil
parameters in question (e.g. friction angle, cohesion, compressibility and permeability) are
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random variables that can be expressed in the form of a probability density function, then
the issue becomes one of estimating the probability density function of some outcome that
depends on the input random variables. The output can then be interpreted in terms of
probabilities, leading to statements such as: “The design load on the foundation will give a
probability of bearing capacity failure of p1%”, “The embankment has a probability of slope
failure of p2%, “The probability of the design settlement levels being exceeded is p3%, or
“The probability of the seepage level exceeding the design limit is p4%”.

A thorough understanding of how random variables affect the functions that depend on
them is essential. The first part of the paper therefore summarizes some of the fundamental
rules that describe this relationship.

2. Some rules describing random variables
In this section, the notation is quite generic with random variables (e.g. X and Y ) denoted
in upper case. Later in the paper, specific geotechnical examples will be included.

2.1 Expectation
Let a random variable X be described by the Probability Density Function (PDF), fX(x).

If g(X) is a function of the random variable X, then the expected value of g(X), is its
average value after it has been weighted by the Probability Density Function:

E[g(X)] =

∫ ∞
−∞

g(x)fX(x) dx (1)

2.2 Moments
First Moment: Mean

µX = E[X] =

∫ ∞
−∞

xfX(x) dx (2)

Second Moment: Variance

Var[X] = σ2
X = E[(X − µX)2] =

∫ ∞
−∞

(x− µX)2fX(x) dx (3)

Third Moment: Skewness

νX =
E[(X − µX)3]

σ3
X

=
1

σ3
X

∫ ∞
−∞

(x− µX)3fX(x) dx (4)

2.3 Identities relating to Expectation
A linear function of two random variables X and Y

E[a+ bX + cY ] = a+ bE[X] + cE[Y ] (5)

The sum of multiple random variables X1, X2, .... etc.

E[X1 +X2 + ...+Xn] = E[X1] + E[X2] + ...+ E[Xn] (6)

The sum of functions of two random variables, X and Y

E[f(X) + g(Y )] = E[f(X)] + E[g(Y )] (7)
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A nonlinear function of two random variables X and Y can be expressed using a Taylor
series expansion

f(X,Y ) = f(E[X],E[Y ]) + (X − E[X])
∂f

∂x
+ (Y − E[Y ])

∂f

∂y

+
1

2
(X − E[X])2 ∂

2f

∂x2
+

1

2
(Y − E[Y ])2 ∂

2f

∂y2

+
1

2
(X − E[X])(Y − E[Y ])

∂2f

∂x∂y

+
1

2
(Y − E[Y ])(X − E[X])

∂2f

∂y∂x
+ .... (8)

where all derivatives are evaluated at the mean. Thus to a first order of accuracy:

E[f(X,Y )] = f(E[X],E[Y ]) (9)

and to a second order:

E[f(X,Y )] = f(E[X],E[Y ]) +
1

2
Var[X]

∂2f

∂x2
+

1

2
Var[Y ]

∂2f

∂y2

+cov[X,Y ]
∂2f

∂x∂y
(10)

2.4 Identities relating to Variance
Variance of a random variable X

Var[X] = E[(X − µX)2]

= E[X2]− (E[X])2 (11)

Variance of a linear function of X

Var[a+ bX] = b2E[(X − µX)2]

= b2Var[X] (12)

Variance of a linear function of two random variables X and Y

Var[a+ bX + cY ] = b2Var[X] + c2Var[Y ] + 2bc cov[X,Y ] (13)

Variance of a linear function of uncorrelated random variables

Var[a0 + a1X1 + a2X2 + ...+ anXn] = a2
1Var[X1] + a2

2Var[X2] + ...+ a2
nVar[Xn] (14)

2.5 Covariance and Correlation
Covariance

cov[X,Y ] = E[(X − µX)(Y − µY )]

= E[XY ]− E[X]E[Y ] (15)
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cov[X,X] = E[(X − µX)2]

= E[X2]− (E[X])2

= Var[X]

= σ2
X (16)

Correlation Coefficient

ρ =
cov[X,Y ]

σXσY
(17)

−1 ≤ ρ ≤ 1

3. The first order second moment (FOSM) method
The First Order Second Moment (FOSM) method is a relatively simple method of including
the effects of variability of input variables on a resulting dependent variable

The First Order Second Moment method uses a Taylor series expansion of the function to
be evaluated. This expansion is truncated after the linear term, (hence “first order”). The
modified expansion is then used, along with the first two moments of the random variable(s),
to determine the values of the first two moments of the dependent variable (hence “second
moment”).

Due to truncation of the Taylor series after first order terms, the accuracy of the method
deteriorates if second and higher derivatives of the function are significant. Furthermore,
the method takes no account of the form of the probability density function, describing
the random variables using only their mean and standard deviation. The skewness (third
moment) and higher moments are ignored.

Another limitation of the traditional FOSM method is that explicit account of spatial corre-
lation of the random variable is not typically done. For example, the soil properties at two
geotechnical sites could have identical mean and standard deviations, however at one site,
the properties could vary rapidly from point to point (“low” spatial correlation length), and
at another they could vary gradually (“high spatial correlation length”). This issue will be
returned to later in the paper.

Consider a function f(X,Y ) of two random variables X and Y .

The Taylor Series expansion of the function about the mean values (µX , µY ), truncated after
first order terms from equation (8), gives:

f(X,Y ) ≈ f(µX , µY ) + (X − µX)
∂f

∂x
+ (Y − µY )

∂f

∂y
(18)

where derivatives are evaluated at (µX , µY ).

To a first order of accuracy, the expected value of the function is given by equation (9), and
the variance by,

Var[f(X,Y )] ≈ Var[(X − µX)
∂f

∂x
+ (Y − µY )

∂f

∂y
] (19)

hence,

Var[f(X,Y )] ≈
(
∂f

∂x

)2

Var[X] +

(
∂f

∂y

)2

Var[Y ] + 2
∂f

∂x

∂f

∂y
cov[X,Y ] (20)
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If X and Y are uncorrelated,

Var[f(X,Y )] ≈
(
∂f

∂x

)2

Var[X] +

(
∂f

∂y

)2

Var[Y ] (21)

In general, for a function of n uncorrelated random variables, the FOSM Method gives:

Var[f(X1, X2, ..., Xn)] ≈
n∑
i=1

(
∂f

∂xi

)2

Var[Xi] (22)

where the first derivatives are evaluated at the mean values (µX1
,µX2

,...,µXn)

3.1 FOSM Example: Passive earth pressure against a smooth wall
The limiting horizontal passive earth force against a smooth wall of height H is given from
the Rankine equation as:

Pp =
1

2
γH2Kp + 2c

′
H
√
Kp (23)

where the passive earth pressure coefficient is written in this case as:

Kp = [tanφ
′
+ (1 + tan2 φ

′
)1/2]2 (24)

in order to emphasize the influence of the fundamental variable tanφ
′
.

In dimensionless form we can write:

Pp
γH2

=
1

2
Kp + 2

√
Kp

c
′

γH
(25)

or

P̄p =
1

2
Kp + 2c̄

√
Kp (26)

where P̄p is a dimensionless passive earth force, and c̄ is a dimensionless cohesion.

Operating on equation (26) and treating tanφ
′

and c̄ as uncorrelated random variables, from
equation (9),

µP̄p = E[P̄p] =
1

2
µKp + 2µc̄

√
µKp (27)

and from equation (22),

σ2
P̄p

= Var[P̄p] =

(
∂P̄p
∂c̄

)2

Var[c̄] +

(
∂P̄p

∂(tanφ′)

)2

Var[tanφ
′
] (28)

The required derivatives computed analytically from equation (26) are given by:

∂P̄p
∂c̄

= 2
√
µKp (29)
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and
∂P̄p

∂(tanφ′)
=

µKp√
1 + µ2

tanφ′

+ 2µc̄

√
µKp√

1 + µ2
tanφ′

(30)

where the derivatives are evaluated at the means.

It is now possible to compute the mean and standard deviation of the horizontal earth force
for a range of input soil property variances. In this example, the Coefficient of Variation
(V ) values for both c̄ and tanφ

′
are the same, thus

Vc̄,tanφ′ =
σc̄
µc̄

=
σtanφ′

µtanφ′
(31)

Table 1, shows the influence of variable input on the passive force in the case of µc̄ = 5 and
µtanφ′ = tan 30o = 0.577. It can be seen that in this case the process results in a slight
magnification of the Coefficient of Variation of the passive force over the input values. For
example, Vc̄,tanφ′ = 0.5 leads to VP̄p = 0.53 and so on.

Table 1. Statistics of P̄p predicted using FOSM (analytical approach)
µc̄ = 5 and µtanφ′ = tan 30o = 0.577

Vc̄,tanφ′ ∂P̄p/∂c̄ Var[c̄] ∂P̄p/∂(tanφ
′
) Var[tanφ

′
] Var[P̄p] σP̄p µP̄p VP̄p

0.1 3.46 0.25 17.60 0.0033 4.03 2.01 18.82 0.11
0.3 3.46 2.25 17.60 0.0300 36.29 6.02 18.82 0.32
0.5 3.46 6.25 17.60 0.0833 100.81 10.04 18.82 0.53
0.7 3.46 12.25 17.60 0.1633 197.59 14.06 18.82 0.75
0.9 3.46 20.25 17.60 0.2700 326.64 18.07 18.82 0.96

The ratio of the output VP̄p to the input Vc̄,tanφ′ can also be obtained analytically from
equations (27) and (28) to give:

VP̄p
Vc̄,tanφ′

≈ 2

√
(
√
µKp + 2µc̄)2(µKp − 1)2 + 4µ2

c̄(µKp + 1)2

(
√
µKp + 4µc̄)(µKp + 1)

(32)

This equation is plotted in Figure 1 for a range of µc̄ values. The graph indicates that in
many cases, the FOSM method causes the ratio given by equation (32) to be less than unity.
In other words the Coefficient of Variation of the output passive force is smaller than the
Coefficient of Variation of the input strength parameters. For higher fiction angles however
this trend is reversed.
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c:/vaughan/papers/iacmag/turin/gr_fe/figures/fig1.pdf

Figure 1.
VP̄p

V
c̄,tanφ

′
vs. µtanφ′ for passive earth pressure analysis by FOSM

3.1.1 Numerical approach

An alternative approach evaluates the derivatives numerically, using a central finite difference
formula. In this case, the dependent variable, P̄p, is sampled across two standard deviations
in one variable, while keeping the other variable fixed at the mean. This large central
difference interval encompasses about 68% of all values of the input parameters c̄ and tanφ

′
,

so the approximation is only reasonable if the function P̄p from equation (26), does not
exhibit much nonlinearity across this range. The finite difference formulas take the form:

∂P̄p
∂c̄
≈
P̄p(µc̄ + σc̄, µtanφ′ )− P̄p(µc̄ − σc̄, µtanφ′ )

2σc̄
=

∆Pp(c̄)

2σc̄
(33)

and

∂P̄p
∂(tanφ′)

≈
P̄p(µc̄, µtanφ′ + σtanφ′ )− P̄p(µc̄, µtanφ′ − σtanφ′ )

2σtanφ′
=

∆Pp(tanφ′ )

2σtanφ′
(34)
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The main attraction of this approach, is that once the derivative terms are squared and
substituted into equation (28), the variances of c̄ and tanφ

′
cancel out, leaving:

Var[P̄p] ≈
(

∆P̄p(c̄)

2

)2

+

(
∆P̄p(tanφ′ )

2

)2

(35)

In this case, P̄p is a linear function of c̄ and is slightly nonlinear with respect to tanφ
′
. It is

clear from a comparison of Tables 1 and 2, that the numerical and analytical approaches in
this case give essentially the same results.

Table 2. Statistics of P̄p predicted using FOSM (numerical approach)
µc̄ = 5 and µtanφ′ = tan 30o = 0.577

Vc̄,tanφ′
∆P̄p(c̄)

2

∆P̄
p(tanφ

′
)

2 Var[P̄p] σP̄p µqu VP̄p
0.1 1.73 1.02 4.03 2.01 18.82 0.11
0.3 5.20 3.04 36.26 6.02 18.82 0.32
0.5 8.66 5.05 100.53 10.03 18.82 0.53
0.7 12.12 7.04 196.54 14.02 18.82 0.74
0.9 15.59 9.00 323.93 18.00 18.82 0.96

3.1.2 Refined approach including second order terms

In the above example, a first order approximation was used to predict both the mean and
variance of P̄p from equations (9) and (19). Since the variances of c̄ and tanφ

′
are both

known, it is possible to refine the estimate of µP̄p by including second order terms from
equation (10) leading to:

µP̄p ≈ P̄p(µc̄, µtanφ′ ) +
1

2
Var[c̄]

∂2P̄p
∂c̄2

+
1

2
Var[tanφ

′
]

∂2P̄p
∂(tanφ′)2

+cov[c̄, tanφ
′
]

∂2P̄p
∂c̄∂(tanφ′)

(36)

where all derivatives are evaluated at the mean. Noting that in this case ∂2P̄p/∂c̄
2 = 0, and

cov[c̄, tanφ
′
] = 0, the expression simplifies to:

µP̄p ≈ P̄p(µc̄, µtanφ′ ) +
1

2
Var[tanφ

′
]

∂2P̄p
∂(tanφ′)2

(37)

where the analytical form of the second derivative is given by:

∂2P̄p
∂(tanφ′)2

=
2

1 + µ2
tanφ′

[
µKp + µc̄

√
µKp

]
−

µtanφ′

(1 + µ2
tanφ′

)3/2

[
µKp + 2µc̄

√
µKp

]
(38)

Combining equations (37) and (38) for the particular case of µc̄ = 5 and µtanφ′ = 0.577
leads to:
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µP̄p = 18.82 + 4.94 Var[tanφ
′
] (39)

Table 3 shows a reworking of the analytical results from Table 1 including second order terms
in the estimation of µP̄p . A comparison of the results from the two tables indicates that the
second order terms have marginally increased µP̄p and thus reduced VP̄p . The differences
introduced by the second order terms are quite modest however, indicating the essentially
linear nature of this problem.
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Table 3. Statistics of P̄p predicted using FOSM
(analytical approach including second order terms)

µc̄ = 5 and µtanφ′ = tan 30o = 0.577

Vc̄,tanφ′ Var[tanφ
′
] σP̄p µP̄p VP̄p

0.1 0.0033 2.01 18.84 0.11
0.3 0.0300 6.02 18.97 0.32
0.5 0.1833 10.04 19.23 0.52
0.7 0.1633 14.06 19.63 0.72
0.9 0.2700 18.07 20.15 0.90

4 The Hasofer-Lind method (FORM)
The major drawback to the FOSM method, as pointed out by Ditlevson (1973), is that
it can give different failure probabilities for the same problem when stated in equivalent,
but different, ways. See also Madsen et al (1986) and Baecher and Christian (2003) for
detailed comparisons of these methods. A short discussion of the non-uniqueness of FOSM
is worth giving here, since it is this non-uniqueness that motivated Hasofer and Lind (1974)
to develop an improved approach.

A key quantity of interest following an analysis using FOSM or FORM is the determination
of the reliability index, β, for a given safety margin, M . The reliability index, β, as defined
by Cornell (1969) is

β =
E [M ]√
Var [M ]

(40)

which measures how far the mean of the safety margin is from zero (assumed to be the failure
point) in units of number of standard deviations. In the classical resistance (R) versus load
(L) problem, the safety margin (M) can be defined as

M = R− L (41)

so that failure occurs if M < 0 and interest focuses on the probability of this event hap-
pening. Since owners and politicians do not like to hear about probabilities of failure, this
probability is codified using the rather more obscure reliability index. There is however a
unique relationship between the reliability index (β) and the probability of failure (pf ) given
by:

pf = 1− Φ(β) (42)

assuming that R and L are normally distributed independent random variables, where Φ(β)
is the area under a standard normal distribution curve to the left of β as given by standard
tables. In the context of passive earth pressure analysis, L might be the load applied to an
anchor block, and R might be the limiting passive resistance available.

The line, or surface in higher dimensions, defined by M = 0 is called the failure surface.

If R is independent of L, then the FOSM method gives from equations (9) and (22):

E [M ] ' E [R]− E [L] = µR − µL
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and

Var [M ] '
(
∂M

∂R

)2

Var [R] +

(
∂M

∂L

)2

Var [L] = Var [R] + Var [L] = σ2
R + σ2

L (43)

(note that because the safety margin is linear in this case, the first-order mean and variance
of M are exact) so that

β =
µR − µL√
σ2
R + σ2

L

(44)

For non-negative resistance and loads, as is typically the case in Civil engineering, the safety
margin can equivalently be defined as

M = ln

(
R

L

)
= ln(R)− ln(L) (45)

so that failure occurs if M < 0, as before. In this case,

E [M ] ' ln(µR)− ln(µL) (46)

which is clearly no longer the same as before, and

Var [M ] '
(
∂M

∂R

)2

Var [R] +

(
∂M

∂L

)2

Var [L]

=
Var [R]

R2
+

Var [L]

L2
(to be evaluated at the means)

= V 2
R + V 2

L (47)

where VR and VL are the coefficients of variation of R and L respectively. This gives a
different reliability index,

β =
ln(µR)− ln(µL)√

V 2
R + V 2

L

(48)

The non-uniqueness of the FOSM method is due to the fact that different functional rep-
resentations may have different mean estimates and different first derivatives. What the
FOSM method is doing is computing the distance from the mean point to the failure sur-
face in the direction of the gradient at the mean point. Hasofer and Lind (1974) solved the
non-uniqueness problem by looking for the minimum distance between the mean point and
the failure surface, rather than looking just along the gradient direction.

In the general case, suppose that the safety margin, M , is a function of a sequence of random
variables, X∼ = {X1, X2, . . .},

M = f(X1, X2, . . .) (49)
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and that the random variables X1, X2, . . . have covariance matrix C
≈

. Then the Hasofer-Lind
reliability index is defined by

β = min
M=0

√
(x∼ − E [X∼ ])TC

≈
−1(x∼ − E [X∼ ]) (50)

which is the minimum distance between the failure surface (M = 0) and the mean point
(E [X∼ ]) in units of number of standard deviations (C

≈
−1). Finding β under this definition is

iterative; choose a value of x∼0 which lies on the curve M = 0 and compute a guess at β0,
choose another point x∼1 on M = 0 and compute another β1, and so on. The Hasofer-Lind
reliability index is the minimum of all such possible values of βi.

In practice, there are a number of sophisticated optimization algorithms, generally involving
the gradient of M , which find the point where the failure surface is perpendicular to the
line to the origin. The distance between these two points is β. Many spreadsheet programs
now include such algorithms, and the user need only specify the minimization equation (see
above) and the constraints on the solution (ie. that x∼ is selected from the curve M = 0 in
this case). Unfortunately, many non-linear failure surfaces have multiple local minima, with
respect to the mean point, which further complicates the problem. In this case, techniques
such as Simulated Annealing (see Numerical Recipes, 1997) may be necessary, but which do
not guarantee finding the global minimum. Monte Carlo simulation, to be considered next,
is an approach which is simple in concept and which can be extended easily to very difficult
failure problems with only a penalty in computing time to achieve a high level of accuracy.

5 Random field/finite element approach (RFEM)
For reasonably “linear” problems, the FOSM and FORM methods described in this paper
are able to take account of soil property variability in a systematic way. The traditional
methods however, typically take no account of spatial correlation, which is the tendency
for properties of soil elements “close together” to be correlated, while soil elements “far
apart” are uncorrelated. In soil failure problems such as passive earth pressure analysis, it
is possible to account for local averaging and spatial correlation by prescribing a potential
failure surface and averaging the soil strength parameters along it (e.g. Peschl and Schweiger
2003). A disadvantage of this approach is that the location of the potential failure surface
must be anticipated in advance, which rather defeats the purpose of a general random soil
model.

To address the correlation issue, the passive earth pressure problem has been reanalyzed
using the random finite element method (RFEM), enabling soil property variability and
spatial correlation to be accounted for in a rigorous and general way. The methodology
involves the generation and mapping of a random field of c

′
and tanφ

′
properties onto a

quite refined finite element mesh. Full account is taken of local averaging and variance
reduction (Fenton and Vanmarcke 1990) over each element, and an exponentially decaying
spatial correlation function is incorporated. An elasto-plastic finite element analysis is then
performed using a Mohr-Coulomb failure criterion (see e.g. Griffiths and Fenton (2001) for
further details).

In a passive earth pressure analysis the nodes representing the rigid wall are translated hori-
zontally into the mesh and the reaction forces back-figured from the developed stresses. The
limiting passive resistance (Pp) is eventually reached and the analysis is repeated numerous
times using Monte-Carlo simulations. Each realization of the Monte-Carlo process involves
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a random field with the same mean, standard deviation and spatial correlation length. The
spatial distribution of properties varies from one realization to the next however, so that each
simulation leads to a different value of Pp. The analysis has the option of including cross
correlation between properties and anisotropic spatial correlation lengths (e.g. the spatial
correlation length in a naturally occurring stratum of soil is often higher in the horizontal
direction). Neither of these options has been investigated in the current study to facilitate
comparisons with the simpler methods.

Lognormal distributions of c
′

and tanφ
′

have been used in the current study and mapped
onto a mesh of 8-node, quadrilateral, plane strain elements. Examples of different spatial
correlation lengths are shown in Figure 2 in the form of a grey scale in which weaker regions
are darker, and stronger regions are lighter.

c:/vaughan/papers/iacmag/turin/gr_fe/figures/fig2.pdf

Figure 2. Typical random fields in the RFEM approach

An example of a relatively low spatial correlation length and a relatively high correlation
length are shown. It should be emphasized that the mean and standard deviation of the
random variable being portrayed are the same in both figures. The spatial correlation length
(which has units of length) is defined with respect to the underlying normal distribution,
and denoted as θln c′,ln tanφ′ . Both c

′
and tanφ

′
were assigned the same isotropic corre-

lation length in this study. A convenient non-dimensional form of the spatial correlation
length can be achieved in the earth pressure analysis by dividing by the wall height H, thus
Θ = θln c′ ,ln tanφ′/H.
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5.1 Parametric studies
A quite extensive set of parametric studies of the passive earth pressure problem by RFEM
were performed by Tveten(2002). A few of these results are presented here in which the
Coefficients of Variation of c

′
and tanφ

′
, and spatial correlation length Θ have been varied.

In all cases, the mean strength parameters have been held constant at µc′ = 100 kPa and
µtanφ′ = tan 30o = 0.577. In addition, the soil unit weight was fixed at 20kN/m3, and the
wall height set to unity. Thus, the dimensionless cohesion described earlier in the paper is
given by c̄ = c

′
/(γH) = 5. The variation in the limiting mean passive earth pressure, µPp ,

normalized with respect to the value that would be given by simply substituting the mean
strength values Pp(µc′ , µtanφ′ ) = 376.4 kN/m, is shown in Figures 3.

c:/vaughan/papers/iacmag/turin/gr_fe/figures/fig3.pdf

Figure 3. Influence of Θ on normalized µPp for different Vc̄,tanφ′

The figure shows results for spatial correlation lengths in the range 0.01 < Θ < 10. At the
lower end, the small spatial correlation lengths result in very significant local averaging over
each finite element. In the limit as Θ→ 0, local averaging causes the mean of the properties
to tend to the Median and the variance to tend to zero (see e.g. Griffiths and Fenton 2004).
For a typical random variable X, the properties of the lognormal distribution give that:
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MedianX
µX

=
1

(1 + VX)1/2
(51)

With reference to Figure 3 and the curve corresponding to Vc̄,tanφ′ = 0.8, the ratio given
by equation (51) is 0.781. For a soil with µc′ = 100 kPa and µtanφ′ = tan 30o = 0.577, as
Θ→ 0, these properties tend to Medianc′ = 78.1 kPa and Mediantanφ′ = 0.451 respectively.
The limiting passive earth pressure with these Median values is 265.7 kN/m, which leads to
a normalized value of 0.71 as indicated at the left side of Figure 3

At the other extreme, as Θ → ∞, there is no local averaging and each realization of the
Monte-Carlo leads to an analysis of a uniform soil. In this case there is no reduction of
strength due to local averaging and the lines in Figure 3 all tend to unity on the right side.
This is essentially the result indicated by the FOSM analysis.

All the lines indicate a slight minimum in the limiting passive resistance occurring close
to, or slightly lower than, Θ ≈ 1. This value of Θ implies a spatial correlation length of
the order of the height of the wall itself. Similar behavior was observed by Griffiths and
Fenton (2001) in relation to bearing capacity analysis. It is speculated that at this spatial
correlation length, there is a greater likelihood of weaker zones of soil aligning with each
other facilitating the formation of a failure mechanism.

The above discussion highlights the essential difference and benefits offered by the RFEM
method over conventional probabilistic. These can be summarized as follows:

• The RFEM accounts for spatial correlation in a rigorous and objective way.

• The RFEM does not require the user to anticipate the location or length of the failure
mechanism. The mechanism forms naturally wherever the surface of least resistance
happens to be.

Figure 4. Typical passive failure mechanism. Dark zones indicate weaker soil.

Figure 4 shows the deformed mesh at failure from a typical realization of the Monte-Carlo
process. It can be seen that in this case the weaker dark zone near the ground surface has
triggered a quite localized mechanism that outcrops at this location.

Some other differences between FOSM and RFEM worth noting are as follows:

1) Figure 3 indicates that for intermediate values of Θ, the RFEM results show a fall and even
a minimum in the µPp as Vc′ ,tanφ′ response as Θ is reduced, while FOSM gave essentially
constant values. In fact, when second order terms were included (Table 3) a slight increase
in µPp was observed.

2) Tables 1-3 using FOSM indicated that the Coefficient of Variation of the passive earth
force was similar to the Coefficient of Variation of the input shear strength parameters.
Due to local averaging in the RFEM on the other hand, the Coefficient of Variation of the
passive earth force falls as Θ is reduced. As Θ→ 0 in the RFEM approach, the Coefficient
of Variation of the passive force also tends to zero.

6 Discussion and concluding remarks
The paper has discussed three methods for implementing probabilistic concepts into geotech-
nical analysis of a simple problem of passive earth pressure. The “simple” methods were the
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First Order Second Moment (FOSM) and First Order Reliability Method (FORM), and the
“sophisticated” method was the Random Finite Element Method method (RFEM).

1) Probabilistic methods offer a more rational way of approaching geotechnical analysis,
in which probabilities of design failure can be assessed. This is more meaningful than the
abstract “Factor of Safety” approach. Being relatively new however, probabilistic concepts
can be quite difficult to digest, even in the so called “simple” methods.

2) The RFEM method indicates a significant reduction in mean compressive strength due
to the weaker zones dominating the overall strength at intermediate values of Θ. The
observed reduction in the mean strength by RFEM, is greater than could be explained by
local averaging alone.

3) The paper has shown that proper inclusion of spatial correlation, as used in the RFEM, is
essential for quantitative predictions in probabilistic geotechnical analysis. While “simpler”
methods such as FOSM and FORM are useful for giving guidance on the sensitivity of design
outcomes to variations of input parameters, their inability to systematically include spatial
correlation and local averaging limits their usefulness.

4) The paper has shown that the RFEM is one of the very few methods available for modeling
highly variable soils in a systematic way. In the analysis of soil masses, such as the passive
earth pressure problem considered herein, a crucial advantage of RFEM is that it allows the
failure mechanism to “seek out” the critical path through the soil.
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