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Abstract

In this work, the theory of random fields is used to account for the influence of spatial

variability on slope reliability. Within this framework the friction coefficient along a

discontinuity is treated as a Gaussian random field which is fully described by its mean value,

standard deviation and spatial correlation length. The random field is simulated using the

Local Average Subdivision (LAS) method. As shown by the examples presented herein, the

spatial correlation of shear strength along a failure plane can have an important influence on

slope performance, as expressed by the failure probability. This is a significant observation

since ignoring the influence of spatial correlation in design may lead to non-conservative

estimations of slope reliability. The planar mode of failure is considered.
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216.1 Introduction

In this work, the influence of spatial variability on rock slope

reliability is studied using 1-d random fields simulated by the

Local Average Subdivision Method (Fenton and Vanmarcke

1990). Specifically, the friction coefficient is treated as a

random field along the discontinuity. Key element of the

random field approach is that the influence of spatial vari-

ability on slope reliability is explicitly taken into account.

The concept of random fields has already been applied to

various geotechnical engineering problems (e.g. stability of

soil slopes, spread and pile foundations, retaining walls) as

part of a finite element approach, best known as the Random

Finite Element Method (Fenton and Griffiths 2008). The

present work offers an application of the theory of random

fields in the area or rock slope stability assessment. The

planar mode of failure is considered.

216.2 Computations Based on the Local
Average Subdivision Method

Assuming that the rock block may slide along a planar

discontinuity (plane AB in Fig. 216.1), the friction coeffi-

cient tanuðxÞ is treated as random field. For the sake of

simplicity, any possible external loading (water pressure,

seismic forces, footing etc.) has been ignored. However, all

equations given below may easily be transformed according

to specific loading situations.

Following Coulomb’s failure criterion, the safety factor

of a rock slope against planar sliding is given by the formula

F ¼
cL þ

R L

0
tðxÞ tanuðxÞdx

W sin bd
ð216:1Þ
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where, tðxÞ is the normal reaction at the base of rock block

(per unit length of slope), tanuðxÞ is the friction coefficient

along the discontinuity which is assumed to be a function of

x (x is a distance along discontinuity on the cross-section

plane measured from the lower end of discontinuity), c is the

cohesion along the discontinuity which is assumed constant,

L is the total length of discontinuity on the cross-section

plane, bd is the inclination angle of discontinuity considering

the planar type of failure and W is the total weight of rock

block. The friction coefficient tanuðxÞ is treated as a random

field with specified stochastic properties.

From Eq. 216.1 it is clear that in order to calculate the

safety factor for a given configuration of the field tanuðxÞ
the normal force (or reaction) at every point along the dis-

continuity must be known. The rational assumption that the

normal reaction varies linearly along the contact area can be

made, especially in the present case where a rigid body lays

on a rigid body. The stress distribution under the rock block

could be assumed to follow a trapezoidal pattern with

maximum and minimum stress value (rM and rm, respec-

tively) as given by the following equation:

rM;m ¼
W cos bd

L
1 %

ec

L=6

! "

ð216:2Þ

where, ec is the eccentricity of the self-weight of rock block,

which, here, is the resultant force acting on the base

(Fig. 216.1).

It can be noted that, Eq. 216.2 is commonly used in

retaining wall and spread foundation problems and it stands

for ec\L=6. If the eccentricity ec is equal to or greater than

L=6, the rock block is not bearing on its whole base but only

on the front edge (Pantelidis 2010).

Based on the trapezoidal distribution of normal reaction

below the rock block of Fig. 216.1, the normal stress at a

given distance x on the discontinuity is:

tðxÞ ¼
x

L
rm þ

L & x

L
rM ¼

W cos bd
L

t̂ðxÞ ð216:3Þ

with

t̂ðxÞ ¼ 1 þ
x

L
&
1

2

! "

2ec

L=6
ð216:4Þ

Thus, the safety factor finally reads

F ¼
cL

W sin bd
þ

1

tan bd

1

L

Z L

0

t̂ðxÞ tanuðxÞdx ð216:5Þ

The random field tanuðxÞ is assumed Gaussian with

mean value l and Markovian covariance function

Cðx; x0Þ ¼ r2 exp &
2 x & x0j j

h

$ %

ð216:6Þ

r2 is the point-variance of the random field and h is the

correlation length, also known as the scale of fluctuation

(Fenton and Griffiths 2008) which describes the distance

over which properties (in this respect, the friction coefficient)

tend to be spatially correlated. For example, an infinitely

large correlation length h corresponds to a perfect correlation

between any two points along the discontinuity. In this

special case, the random field is reduced to a single random

variable everywhere.

In the framework of the LAS method the discontinuity is

subdivided into N intervals, corresponding to N vertical

parts of the rock block and its normal reaction. The

expression Eq. (216.5) is approximated by

F )
cL

W sin bd
þ

1

tan bd

1

N

X

N

i¼1

t̂i tanui ð216:7Þ

where t̂i is the value of the function tðxÞ at the center of the

i-th interval, i ¼ 1; . . .;N, and it is given by

t̂i ¼ 1 þ
3

4
&
1

2
þ

i & 1

N & 1

' (

2ec

L=6
ð216:8Þ

and tanui is the random variable representing the friction

coefficient tanuðxÞ in the i-th interval. The variable tanui is

the average of the random field tanuðxÞ in the i-th interval

of the discontinuity. The stochastic properties of the variable

tanui are, thus, completely determined by the stochastic

properties of the random field and they are implemented in

the simulations.
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Fig. 216.1 Geometric elements of the problem
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216.3 Application Examples

Two examples giving the probability of failure pf for various l

and r values of the field tanuðxÞ against the normalized

correlation length h=L are given below; see Fig. 216.2.

Cohesion is assumed constant along the discontinuity

(deterministic value). Since different mean values l corre-

spond to different safety factor values F, the curves are labeled

according to both the associated value of the deterministic

safety factor F and l. The following data stand for both

examples: bd ¼ 30*, c ¼ 40 kPa, L ¼ 10 m, ec ¼ 0:5 m and

W ¼ 9000 kN=m. The results given in Fig. 216.2 correspond

to 1,000,000 realizations of the random field and N ¼ 4

subdivisions of discontinuity. It is important to be mentioned

that, the minimum number of discontinuity subdivisions that

fully and effectively describes the present problem is N ¼ 4.

Increasing the number of subdivisions only increases the

computation time without having any influence on the results,

whilst, as the number of realizations becomes greater, more

stable results (smooth curves) are obtained.

The general features of the probability of failure curves

shown in Fig. 216.2 can be described as follows. As the

correlation length h of the random field tanuðxÞ becomes

smaller the system tends to behave more in a deterministic

way, that is, the probability of failure tends to 0 or 1

depending on whether the safety factor value is above or

below the value 1. When the correlation length h becomes

comparable to the length of the discontinuity, then the entire

random field tanuðxÞ tends to behave like a single Gaussian

random variable. Indeed, in the limit of large h ðh ! 1Þ the
covariance function Cðx; x0Þ approaches everywhere the

constant value r2; see Eq. 216.6. Thus, in the limit of large h

the probability of failure approaches an asymptotic value that

depends only on the point variance r2 of the random field

tanuðxÞ. The effect of greater variance r2, observed by

comparing the two plots of Fig. 216.2, is to introduce

stronger deviations from the deterministic answers for the

probability of failure, 0 or 1, on the left part of the curves,

and a stronger convergence towards the indecisive 0.5 value

of the probability of failure, on the right part of the curves.

For l ¼ tanð27:75*Þ, which corresponds to the just stable

condition ðF ¼ 1Þ, the probability of failure is essentially

equal to 0.5 for all values of the correlation length h. This is

why the slightly different value we have chosen to consider

in the case depicted in the middle curve of both graphs

below deviates adequately from 0.5 only for relatively small

values of the correlation length.
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Fig. 216.2 Examples: pf versus

h=L plot for the various F values

and for r ¼ tanð5*Þ and

r ¼ tanð10*Þ
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216.4 Summary and Conclusions

Soils and rocks are among the most variable of all engi-

neering materials, and as such are highly amenable to

probabilistic treatment (Griffiths and Fenton 2007, 2004).

Acknowledging the significance of spatial variability of

shear strength along a rock discontinuity, the LAS method of

simulating random fields has been used to calculate the

probability of failure of a rock slope. The friction coefficient

along a discontinuity is treated as a Gaussian random field

which is fully described by its mean value, standard devia-

tion and spatial correlation length.

The examples presented herein highlight the strong

influence of the scale of fluctuation of the friction coefficient

on slope performance. Indeed, different correlation length

values may correspond to totally different probability of

failure values. Simplified probabilistic analyses, in which

spatial variability is ignored by assuming perfect correlation,

can lead to non-conservative estimates of the probability of

failure. This effect is most pronounced at relatively low

factors of safety or when the coefficient of variation ðCOV ¼
r=lÞ of the discontinuity strength is relatively high.
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