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ABSTRACT: The majority of slope stability analyses are deterministic in nature in that the inherent
variability of the soil is not modelled directly, rather some ‘average’ soil strength value is assumed which
leads to a Factor of Safety. Slope stability analyses cbtained through slip circle or more recently finite
element methods allow the inclusion of strata and defined soil regions but have not taken account of
the spatial variability and correlations within the soil mass. In the present study, the spatial correlation
effect has been studied in detail in the analysis of a cohesive slope formed from undrained clay. The
model has involved a combination of random field theory with an elasto-plastic finite element algorithm.
Monte Carlo simulations have been performed in order to assess the influence of the variance of the
soil shear strength and its spatial correlation length on the stability of the slope. The results of this
parametric study enable the traditional Factor of Safety of the slope to be re-interpreted in the context

of Reliability Based Design.

1 INTRODUCTION

The majority of slope stability analyses and designs
are deterministic in nature based on a Factor of
Safety approach that takes into account the mate-
rial parameters and slope geometry. This Factor of
Safety is usually based on both design codes and a
degree of engineering judgement which leads to the
possibility that different Factors of Safety could be
suggested by independent designers. Standard pro-
cedures published by Bishop (1955), Bishop and
Morgenstern (1960), and Morgenstern and Price
(1965) using slip circles are still commonly used in
industry with computers used to obtain the mini-
mum Factor of Safety. Although these methods are
capable of analysing zoned and stratified soil they
are unable to account for the spatially variable na-
ture of soils.

In all analyses there are five distinct sources of
uncertainty (Cambou 1975, Mostyn and Li 1993):

1) Material properties, e.g. soil shear strength,
ii) Loading conditions,

iii) Boundary conditions,
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iv) Calculation methods (or systematic error),
v) Continuum characteristics.

In the majority of analyses, all of these sources
are assumed to be deterministic. Previous studies
by Dai ef al (1993) presented a method of proba-
bilistic slope stability analysis using deterministic
slip circle computer software and Monte Carlo sim-
ulation. In their study the spatial correlation of the
soil parameters was not implemented.

In the present analyses, visco-plastic finite ele-
ment code has been combined with the Local Av-
erage Subdivision (LAS) technique (Fenton 1990,
Fenton and Vanmarcke 1990) to performm Monte
Carlo simulations of slope stability problems where
the soil displays spatial variability. This approach
was noted by Mostyn and Li (1993) as being
a promising method for performing probabilistic
slope stability analyses. Previous studies of prob-
abilistic seepage, settlement, and bearing capacity
problems have been presented by the authors using
the same methodology (Griffiths et al 1994, Paice et
al 1996, Paice and Griffiths 1997) and the current
studies form part of a wider study of probabilistic
geotechnical problems conducted by the authors.



2 BRIEF DESCRIPTION OF FINITE ELE-
MENT AND RANDOM FIELD MODELS

The finite element program used the Visco-plastic
algorithm (Zienkiewicz and Cormeau 1974) to
model the non-linear soil behaviour and was similar
to that published in the text by Smith and Griffiths
{1988). In the analyses, the slope was assumed to
be formed from undrained clay characterised by the
Mohr-Coulomb failure criterion with ¢, = 0°. This
assumption restricted the soil parameters to

i) Young's modulus, E,

)
11) Poisson’s ratio, v,
iii) Undrained shear strength, c,,
)

iv) Unit weight, .

To simplify the analyses, the Young’s modulus,
Poisson’s ratio, and unit weight of the clay are as-
sumed to be characterised by deterministic values.
The only spatially random material parameters was
therefore the undrained shear strength which has
been modelled using the LAS technique. In addi-
tion to these assumptions, the loading conditions
(gravity) and boundary conditions were also as-
sumed to be deterministic.

Measurements of the undrained shear strength
of clays have shown coefficients of variation in the
range 0.2 < oo, /e, < 0.5 with a recommended
value of ac, /e, = 0.3 (Lee et ol 1983). Since the
undrained shear strength may not take negative val-
ues, the lognormal probability distribution has been
assumed and the undrained shear strength obtained
through the transformation

cL = exp {}U:lncu + (71ncugi} ) (1)

in which ¢l is the undrained shear strength assigned
to the it element, g; is the local average of a stan-
dard Gaussian random field, g, over the domain of
the i** element, and pic, and o, are the mean
and standard deviation of the logarithm of ¢, (ob-
tained from the ‘target’ mean and standard devia-
tion g, and og,).

The LAS technique (Fenton 1990, Fenton and
Vanmarcke 1990) generates realisations of the local
averages g; which are derived from the random field
g having zero mean, unit variance, and a spatial cor-
relation controlled by the scale of fluctuation, 0.,.
As the scale of fluctuation tends to infinity, g; be-
comes equal to g; for all elements ¢ and j - that
is the field of undrained shear strengths tends to
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become uniform on each realisation. At the other
extreme, as the scale of fluctuation tends to zero,
¢; and g; become independent for all ¢ # j - the
undrained shear strength varies rapidly from point
to point.

In the two-dimensional analyses presented in
this paper, the scales of fluctuation in the horizon-
tal and vertical directions are taken to be equal
(isotropic) even though the scale of fluctuation
is likely to be greater horizontally than vertically
in naturally deposited soil. The two-dimensional
model also implies that the out-of-plane scale of
fluctuation is infinite - the undrained shear strength
is constant in this direction. This is clearly a defi-
ciency of the present model, however it is believed
that useful information regarding to the reliability
of an undrained clay slope may still be observed
from the analyses.

3 SUMMARY OF RESULTS OBTAINED FROM
ANALYSES
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Figure 1: General slope boundary conditions (from
Taylor 1937)

Figure 1 shows the general boundary conditions
presented by Taylor (1937). In the parametric stud-
ies a 45 degree slope of height H = 10.0m with no
founding layer was used, i.e. D = 1.0. Monte Carlo
simulations using 2000 realisations were performed
over the parameter ranges

eu/ticy € {0.2,0.3,0.4,0.5,0.75,1.0},  (2)

where 0.2 < 0¢, /e, < 0.5 is the range coefficients
of variation reported by Lee et al (1983) and

fo,/H € {1/40,1/10,2/5,
8/5,32/5,128/5, 00}, (3)

along with E = 1.0 x 10°kN/m®, » = 0.3, and vy =
20.0kN/m". The undrained shear strength mean,
Pey, corresponding to a Factor of Safety of F =
1.0 obtained from the finite element code equalled
ficw = 36.95kN/m” which is close to the value ob-
tained from Taylor’s chart of ¢, A 33kN/m”. The



Figure 2: Typical realisation of random undrained shear strength field corresponding to failure for
Ceu/ficy = 0.5 and 8., /H =1/10

results of the analyses have been interpreted on a
fail/no fail criterion from which the reliability has
been assessed. For example, if out of 2000 realisa-
tions 200 did not fail and 1800 failed, the reliability
would be 10%. Figure 2 shows a typical displaced
finite element mesh corresponding to failure of the
clay slope for o.,/fte, = 0.5 and 8., /H = 1/10
with the mechanism enhanced by regridding (Grif-
fiths and Kidger 1995). In Figure 2 a global failure
mechanism is evident along with a number of local
failures in zones of weaker undrained shear strength

(lighter greys).
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Figure 3: Reliability of earth slope corresponding
to fte, = 36.95 where F = 1.0

Figure 3 shows the variation of the slope relia-
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bility corresponding to a undrained shear strength
mean of pi, = 36.961{1\1/nr12 (Recall that a uniform
slope with this undrained shear strength would have
a Factor of Safety of F = 1.0). For all undrained
shear strength coefficients of variation, the reliabil-
ity of the slope increases with greater correlation of
the random fields (increasing scale of fluctuation,
B.,). As the scale of fluctuation tends towards in-
finity, the reliability approaches clear upper bounds.
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Figure 4: Reliability of earth slope corresponding
to g, = 51.73 where F = 14

Figures 4 and 5 show similar plots for undrained
shear strength means of g, = 51.73kN/m’ and
pey = 97.07kN/m? corresponding to deterministic
Factors of Safety of F = 1.4 and F = 2.6 respec-




tively. Common design Factors of Safety are of-
ten in the region of F = 1.5. Clearly at this order
of Factor of Safety, Figure 4 shows that the spa-
tial variability of the clay has a significant effect
on the reliability of the slope — reliability decreases
for increasing undrained shear strength coefficient
of variation and scale of fluctuation.
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Figure 5: Reliability of earth slope corresponding
to pie, = 96.07 where F = 2.6
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Figure 6: Reliability of earth slope corresponding
t0 Ocy [ they = 0.5

Figure 6 shows the variation of the slope reliabil-
ity with undrained shear strength means tuned to
the deterministic Factor of Safety for a coefficient of
variation of g, /e, = 0.5, the upper bound stated
by Lee et al (1983). For F < 1.1 the reliability of
the clay slope increases for rising scale of fluctu-
ation, tending to the upper bounds shown by the
dashed plots — the increase of spatial correlation

of the undrained shear strength is beneficial to the
reliability of the slope. For F' > 1.2 the opposite
behaviour is observed with the increase in spatial
correlation reducing the the reliability of the slope,
These observation are governed by the relative po-
sitions of the lognormal distribution used to mode]
the undrained shear strength and are discussed in
the next section.

4 DISTRIBUTIONS OF UNDRAINED SHEAR
STRENGTH MEASURES

Figures 7 to 9 show the distributions of the
arithmetic average undrained shear strength for
Ocyfttey = 0.5, pe, = 36.95 where F = 1.0 and
8., /H € {1/40,2/5,32/5}. For F = 1.0, an increas-
ing proportion of the distribution is located above
the undrained shear strength of ¢, = 36.95kN/m?
corresponding to a deterministic Factor of Safety
equal to 1.0 (shown by the vertical dashed line) and
therefore the reliability of the slope increases. This
behaviour corresponds with the plot for F = 1.0 in
Figure 6.
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Figure 7: Distribution of arithmetic average
undrained shear strength for e.,/uc, = 0.5, pe, =
36.95 where F = 1.0 and 6.,/H = 1/40
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Figure 8  Distribution of arithmetic average

undrained shear strength for oc, /e, = 0.5, iy =
36.95 where F = 1.0 and 6, /H = 2/5
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Figure 9: Distribution of arithmetic average

undrained shear strength for o¢, /pc, = 0.3, e, =
36.95 where F = 1.0 and @, /H = 32/5
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Figure 10: Distribution of arithmetic average
undrained shear strength for o, /iy, = 0.5, fie, =

51.73 where F = 1.4 and 6., /H = 1/40
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Figure 11: Distribution of arithmetic
undrained shear strength for o, /pic, = 0.5, pe, =
51.73 where F = 1.4 and 6., /H = 2/5
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Figure 12: Distribution of arithmetic average

undrained shear strength for oc,/pte, = 0.5, fic, =
51.73 where F = 1.4 and 8., /H = 32/5

Figures 10 to 12 show the distributions of the
arithmetic average undrained shear strength for
Oy trey = 0.5, pe, = 5173 where F = 1.4 and
6., /H € {1/40,2/5,32/5}. For I = 1.4, a decreas-
ing proportion of the distribution is located above
the undrained shear strength of c, = 36.95kN/m”
corresponding to a deterministic Factor of Safety
equal to 1.0 (shown by the vertical dashed line) and
therefore the reliability of the slope decreases. This
behaviour corresponds with the plot for F = 1.4 in
Figure 6 and explains why there are significantly
different behaviours for the various values of F.

Table 1: Reliabilities computed from Monte Carlo
simulations and undrained shear strength measures

for oey [ phey, = 0.5 for g, = 36.95 where F = 1.0

Reliability (%)
., /H | M-C Simulations | Distributions
1/40 0.00 0.00
2/5 25.20 24.93
32/5 38.55 39.71
00 40.70 38.46

The area underneath the distributions shown in
Figures 7 to 12 may be computed to yield the prob-
ability of a given event. Computation of average
the probabilities of the arithmetic, geometric, and
harmonic average undrained shear strengths being
greater than 36.951(1\1/1112 shows close approxima-
tion to the reliability of the slope. Table 1 shows
a sample of the reliabilities obtained from both
the solution of the finite element problem and the
averaging of the undrained shear strength quan-
tities. This observation means that for the slope
boundary-value problem studied, the reliability of
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the slope can be obtained without the need to per-
form the lengthy finite element solutions.

5 CONCLUDING REMARKS

The paper has presented results which form part of
a broad study conducted by the authors into the in-
fluence of random soil properties on geotechnical de-
sign. In this paper, random field methodology has
been combined with the finite element method to
study the reliability of a slope formed from lognor-
mally distributed undrained clay. Parametric stud-
ies to gauge the influence of the undrained shear
strength coefficient of variation and spatial correla-
tion have been performed.

For an undrained shear strength mean tuned to
a deterministic Factor of Safety equal to 1.0 the
reliability of the slope increases for increasing spa-
tial correlation. In addition, rising undrained shear
strength coeficient of variation reduces the reliabil-
ity of the slope as would be expected. For undrained
shear strength means tuned to deterministic Fac-
tors of Safety of 1.4 or greater (typical deterministic
Factors of Safety used for design) the increase in
spatial correlation of the undrained shear strength
random fields was detrimental to the stability of the
slope. These trends correspond with the locations
of the undrained shear strength distributions and
are the subject of further investigations.

REFERENCES

Bishop, A.W. 1955. The use of the slip circle in the
stability analysis of earth slopes. Géotechnigue
5:7-17.

Bishop, A.W. & Morgenstern, N.R. 1960. Stabil-
ity coefficients for earth slopes. Géotechnique
10:129-150.

Cambou, B. 1975. Application of first order uncer-
tainty analysis in the finite element method in
linear elasticity. In E. Schiltze (ed) Proc. 2nd
Int. Conf. Application of Statistics and Proba-
oulity in Soils and Structural Engineering: 67-88,
Aachen, Germany.

Dai, Y., Fredlund, D.G. & Stolte, W.J. 1993. A
probabilistic slope stability analysis using deter-
ministic computer software. In K.5. Li & S-C.R.
Lo (eds), Probabilistic methods in geotechnical
engineering: 267-274. Rotterdam: Balkema.

Fenton, G.A. 1990. Simulation and analysis of ran-
dom fields. PhD thesis, Dept. of Civil Engineer-
ing and Operations Research, Princeton Univer-
sity.

548

Fenton, G.A. & Vanmarcke E.H. 1990. Simulation
of random fields via local average subdivision. J.
Eng. Mech., ASCE 116(8):1733-1749.

Griffiths, D.V. & Kidger, D.J. 1995. Enhanced vi-
sualization of failure mechanisms by finite ele-
ments. Comput. Struct. 55(2):265-269.

Griffiths, D.V., Paice, G.M. & Fenton, G.A. 1994,
Finite element modeling of seepage beneath
sheet pile wall in spatially random soil. In H.J.
Siriwardane & M.M. Zaman (eds), JACMAG 94:
1205-1210. Rotterdam: Balkema.

Lee, LK., White, W. & Ingles, 0.G. 1983. Geotech-
nical engineering. Boston:Pitman.

Morgenstern, N.R. & Price, V.E. 1965. The anal-
ysis of the stability of general slip surfaces.
Géotechnique 15:79-93.

Mostyn, G.R. & Li, K.S. 1993. Probabilistic slope
analysis — State-of-play. In K.S. Li & S-C.R. Lo
(eds), Probabilistic methods in geotechnical engi-
neering: 89-109. Rotterdam: Balkema.

Paice, G.M. & Griffiths, D.V. 1997. Bearing capac-
ity reliability of an undrained clay block formed
from spatially random soil. To appear in Numer-
ical models in geomechanics, NUMOG VI. Rot-
terdam: Balkema.

Paice, G.M., Griffiths, D.V. & Fenton. G.A. 1996.
Finite element modeling of settlements on spa-
tially random soil. J. Geotech. Fng., ASCE
122(9):777-779.

Smith, L.M. & Griffiths, D.V. 1988. Programming
the finite element method 2nd Edition. Chich-
ester:Wiley.

Taylor, D.W. 1937. Stability of earth slopes. Jour-
nal of the Boston Society of Civil Engineers
24(3):337-386.

Zienkiewicz, 0.C. & Cormeau, L.C. 1974. Vis-
coplasticity, plasticity and creep in elastic solids.
A unified numerical solution approach. Int. J.
Num. Meth. Eng. 8:821-845.





