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ABSTRACT: In this paper observations on the computation of the bearing capacity factor N, by finite
clements are presented using a simple linear-elastic perfectly plastic Mohr-Coulomb constitutive soil model.
The results of the analyses show that, for this type of stress-strain law, the value of N, is independent of the
footing width provided that a sufficient number of Gauss points are used directly under the footing and a
correction is made for the surcharge component of the bearing capacity at the Gauss point depth. When
simulating a smooth footing the predicted values of N, seem to be close to the values suggested by Hansen &

Christiensen (1969).

] INTRODUCTION

Tt is well known that the bearing capacity factor N,
for long strip footings decreases with increasing
width of foundation B. Evidence of this can be
traced back to the well known paper by de Beer
(1965) summarised in Figure 1. The two mains
reasons proposed for this phenomenon are: (i) effect
of the higher foundation pressures reducing the
friction angle ¢ and (ii) progressive failure producing
a grain size effect due to shear band formation. For a
particutar foundation two other factors can also be
considered, (iii) pre-loading of foundation soil and
(iv) non-uniformity’s of density within the soil.

Hettler and Gudehus (1988) performed triaxial
compression and centrifuge tésts using Karlsruhe
sand and proposed an expression for evaluating the
reduction in ¢ with confining pressure and its effect
on the bearing capacity factor N,. They found that N,
was strongly influenced by the pressure dependence
of the friction angle ¢ Kimura et al (1985) had
previously reported that progressive failure and
strong anisotropy in dense sands was also
responsible for variations in ;.

Often numerical studies of ultimate bearing
capacity (Griffiths 1982 and Kay & Legein 1994)
using simple constitutive soil models indicate a
reduction in N, with footing width; although for
apparently quite different reasons to those
mentioned in the first paragraph. The work

presented in this paper will show that this reduction
is due to the mesh configuration and once accounted
for constant values of N, can be computed regardless
of the footing width. These values can then be
compared to theoretical expressions based - on
plasticity theory proposed by other researchers.
However, there are problems involved in the
theoretical determination of N, using plasticity
theory due to the curved nature of the slip
mechanisms, making the evaluation of N, very
difficult. Of the many solutions available Terzaghi’s
[6] values are often used, or those suggested by
Brinch Hansen (1968) & Meyerhof (1963),

N, =180(N, - 1) tan¢ (Brinch Hansen 1968) (1)
N, = (N, - 1)tan(1.4¢) (Meyerhof 1963)  (2)

Eurocode 7 Part 1 suggests using the values
obtained by Vesic (1973) when the interface angle
between the foundation and the sand 62¢/2,

Nr = Z(Nq +1)tan¢ (Vesic 1973) 3)
where,
N, = exp(w tan¢) tan®(45+ ¢ /2) 4

To accurately study the reduction in N, with footing
width more sophisticated soil models must be used
which can accurately simulate the pressure
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Figure 1 Bearing capacity factor N, as a function of foundation width B after de Beer (1965)

dependence (i.e. the current isotropic stress level) of
the friction angle ¢,

2 ANALYSIS PROCEDURE

A linear-elastic perfectly plastic Mohr-Coulomb
constitutive soil model was used combined with an
elastic-viscoplastic stress redistribution algorithm.
The soil was attributed the following soil constants
$=25°, y=20 kN/m’, 1=0.3, y=0° (non-associated)
and £=100 MPa.

Since the problem is symmetrical about the centre
line only half of the mesh needs to modelled. To
induce bearing failure displacement increments were
applied (typically 100) to the nodes at the surface of
the soil, representing a smooth footing, and the
vertical stresses at the Gauss points directly beneath
were averaged to find the bearing stress . At failure
g tends to a constant value (g.,) and N, can be
determined from Terzaghi’s (1943) theory,

N,, = 2 Quir
B

()

In problems of this type displacement increments
must be used as the footing cannot support any
normal stress at its edge. In fact, directly adjacent to
the edge of the footing the shear strength of the
granular soil is zero which tends to induce numerical
difficulties due to the development of a singularity.
This can often lead to substantial increases in
computational effort with increasing friction angle.
Also, convergence becomes increasing difficult as

the friction angle increases, this is especially the case
if rough footing are simulated. Tn all the analyses
performed eight noded quadrilateral elements were
used with a 2x2 integration rule. The initial stresses
were set by simply multiplying the vertical distance
of the Gauss point from the surface by the unit
weight for stresses acting in the vertical direction,
and then by X, for stresses acting in the horizontal
direction (all runs X, =1.0).

3 PRELIMINARY STUDIES

In these initial studies the mesh shown in Figure 1
was used for all the analyses. The width of the
footing was varied by simply increasing the number
of nodes used to represent the footing. This means
that an increasing number of Gauss points are used
to find N,

Figure 2 Finite element mesh
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The results of the computer runs are shown in
Figure 3. It appears that N, is a function of the
footing width, even at a friction angle of ¢=25°.
Using finite elements reductions in &, with footing
width of this type have been reported by several
researchers. If higher friction angles are used larger
variations in N, are predicted, especially at small
footing widths. It has also been reported that the
factor appears to dependent on the angle of dilation,
increasing as the dilation angle increases.
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Figure 3 Effect of footing width on N,
However, further investigation is required to

establish if this reduction is due to the increase in the
number of Gauss points or the footing width.

4 EFFECT OF OVERALL MESH SIZE

A simple method of determining if the size of the
footing governs the value of N, is to multiply the
overall dimensions of the mesh by the same factor.
For example, if the mesh of a footing 1.5m wide is
multiplied in both the horizontal and vertical
direction by 0.1, a 0.15m footing is simulated. In this
way the same mesh density and footing /mesh-
dimensions ratio is kept constant. Table 1 shows the
effect on N, for factors of 0.1 and 10.

Table | Effect of mesh size on &,

Table 1 shows that using a linear-elastic perfectly
plastic constitutive soil model &, is not a function of
the footing width and so must be influenced by the
finite element mesh configuration. In the above
analyses a constant footing width (B) to first element
depth(d) ratic (B/d) was used. It is therefore
necessary to establish if the depth of the first row of
elements (i.e. the Gauss point depth) has an effect,
especially since the shear strength of the granular
soil increases with depth as the isotropic stress level
increases.

5 EFFECT OF THE FIRST ELEMENT DEPTH

In these analyses the depth of the first row of
elements shown in Figure 1 was varied to produce
different B/d ratios. Table 2 shows typical results of
the analysis for a footing width of B=1.5m.

Table 2 Effect of B/d ratio

Multiplication Width B (m) N,
Factor

0.1 0.15 4.3

1 15 4.3

10 15 4.3

d (m) B/d N,
0.75 2 4.9
0.5 3 43
0.375 4 4.15
0.3 5 4.0

Table 2 shows that if g is determined by simply
averaging the stresses directly under the foundation
then the calculation is mesh dependent. However,
the problem is that the averaged vertical stresses at
the Gauss points also include the weight of the soil
above and is equivalent to a foundation at the Gauss
point depth (d"). If this approach is to be adopted
then equation (5) needs to include the N, factor in
the calculation. The modified or corrected value of
N, can then be found from equation (6) given below.

N, = 2N -

vB
To determined A, the procedure given by Griffiths
(1982) was used whereby all the Gauss points are
set at the same initial stress value and the analysis
performed as previously; &, is found by setting 5=0
in equation (6). For an angle of friction of ¢=25° the
finite element program computed Ng~103 for
d’=0.073m, compared to Terzaghi’s value of
N;=10.5 from equation (4). If the finite element
value of N, is substituted back into equation (4) to
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determine the corrected factor N, then a constant
value is predicted as shown in Table 3.

Table 3 Corrected values of ¥, for g=25°

d (m) Bid Uncorrected | Corrected
N, Ny
0.75 2 49 34
0.5 3 43 3.4
0.375 4 415 34
0.3 5 40 3.4

The result of N, =3.4 is thought to be a more
accurate value of this factor for ¢=25° equations (1)
& (2) predict 8.1 and 6.8 respectively. The authors
have conducted similar computer simulations for
other friction angles (Woodward & Griffiths 1997)
and found that the N, values computed in this way
tend to agree with the factors predicted by Hansen
& Christiensen (1969); N, =3.5 for ¢=25°. Frydman
& Burd (1997) have recently calculated finite
element values of N, for ¢>30° using rather fine
meshes. In these analyses nodal forces were
calculated at foundation level and converted into a
bearing stress. A correction factor was required
however to account for the singularity at the footing
edge. For smooth footings and a dilation angle of
=0 it appears that finite element values of N, using
a linear-elastic perfectly plastic constitutive soil
model can be obtained from Table 4.

Table 4 Finite element predictions of N, for smooth
footings and y=0° after Woodward &
Griffiths (1997) and Frydman & Burd (1 997)

@ Woodward & Frydman & Burd
Griffiths (1997) (1997)

10 03 -

15 0.7 -

20 1.6 -

25 34 -

30 73 7.9

35 17.6 18.9

40 - 42

45 - 92

6 CONCLUSIONS

This paper has shown that a linear-elastic perfectly
plastic soil model within a finite element program

does not predict a variation in N, with footing width
and that relatively course meshes can be used to
provide a conservative estimate of its value with
changing friction angle. An allowance must be made
however for the surcharge component of the soil at
the Gauss point depth when averaging the stresses.
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