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A note on load and resistance factors in slopes and foundations
Resultados recientes sobre factores de carga y factores de resistencia

en taludes y fundaciones
D.V. Griffiths, Colorado School of Mines, Golden, CO 80401, USA
d.v.griffiths@mines.edu

Abstract
The widely differing factors of safety traditionally used for ultimate limit state design in slope stability and

bearing capacity have been re-examined using numerical and analytical methods.  The results show that for typical
slope and bearing capacity systems, geotechnical design outcomes are much more sensitive to resistance factors
than load factors.

Resumen
Los factores de seguridad ampliamente diferentes usados tradicionalmente en cálculos de estado límite último

en el diseño de estabilidad de taludes y capacidad de carga han sido re-examinados usando métodos numéricos y
analíticos. Los resultados muestran que para sistemas típicos de taludes y capacidad de carga, los resultados del
diseño geotécnico son mucho mas sensibles a los factores de resistencia que a los factores de carga.

1 INTRODUCTION

It is well known that slope stability and bearing
capacity analyses for design typically target
factors of safety of around 1.5 and 3.0
respectively. Both applications involve ultimate
limit state conditions, so there is an implication
that the bearing capacity design is twice as safe as
that for slope stability. Can this be true? The
question in not easily answered, because the factor
of safety used in slopes is a strength factor, while
that for bearing capacity is a loads factor.
Atkinson (2007) suggested that the high factor of
safety applied to the bearing capacity equation
may have originated as an empirical means of
limiting settlements, i.e. a load about three times
smaller than the ultimate value would typically
give acceptable settlements. Clearly in current
practice, serviceability limit states are dealt with
quite separately to ultimate limit states. A general
discussion of the difference between factors of
safety based on resistance and load for slope and
bearing capacity problems, and the disparity
between them, was presented by Duncan and
Wright (2005), and there are numerous other
references in which load and resistance factors
have been discussed (e.g. Terzaghi et al. 1996,
Salgado 2008). While strength reduction is the

traditional way of finding the factor of safety of
slope, the idea has been applied to other
geotechnical stability problems such as
excavations and retaining walls (e.g. Dawson et
al. 2000). In this paper, factors of safety related to
strength reduction and loads increase have been
compared for slope stability and bearing capacity
examples. In the slope stability example, factors
of safety have been computed using both Bishop’s
method and elastic-plastic finite elements. In the
case of bearing capacity, a direct analytical
comparison between load and strength factors has
been facilitated by a novel identity for the passive
earth pressure coefficient PK .

2 A SLOPE STABILITY EXAMPLE

The slope shown in Fig. 1 has a slope angle of
=33.7β ° (1.5h:1v), a slope height of  6 mH = ,

and a depth ratio of 1.5D = . The cohesion and
unit weight are set to 20.08 kPac′ =  and

320 kN/mγ = respectively, and the friction angle
is varied in the range 0 φ β′≤ <  (i.e. the soil
friction angle is always less than the slope angle).
Effective stress analyses are performed
throughout, except for the special case of 0uφ = ,
when a total stress analysis can be assumed with
an undrained shear strength of  20.08uc =  kPa
and saturated unit weight of 320 kN/msatγ = . In
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this study, the total stress case is calibrated to give
a factor of safety of 1FS = .

Figure 1. Test slope

Table 1 gives a list of several ways in which a
slope can be brought to failure as discussed by
Pantelidis and Griffiths (2014). Method 1
represents the classical approach, in which tanφ′
and c′  are factored simultaneously and by the
same amount. In this slope stability example,
Methods 1 and 2 will be considered, although it
may be noted that unit weight increase gives the
same factor of safety as cohesion (only) strength
reduction, i.e. Methods 2 and 3 are the same, thus

                              (1)
Table 1. Different factoring strategies to failure

Method Factoring strategy

1 Reduce c′  and ( ), tantan  cFS φφ ′ ′′

2 Increase ( ) FSγγ

3 Reduce ( ) cc FS ′′

4 Reduce ( )tantan  FS φφ ′′

5 Increase ( ) 
hh kk FS

6 Increase ( ) 
uu rr FS

In the current work, for each friction angle
selected in the range mentioned above, two factors
of safety were computed using the following
methods:

1. ,tancFS φ′ ′  by strength reduction, i.e. the
factor by which the shear strength
parameters c′  and tanφ′  must be reduced
to bring the slope to the point of failure.
This is the method used in conventional
geotechnical engineering practice.

2. FSγ  by gravity increase, i.e. the factor by
which the unit weight γ  must be
increased to bring the slope to the point of
failure

Two methods were used to compute the factors
of safety mentioned above:

a) A limit equilibrium program using
Bishop’s method was used to find the
conventional factor of safety ( ),tancFS φ′ ′  by
Method 1. To find the factor of safety
based on gravity increase ( )FSγ  by
Method 2, the soil unit weight was
gradually increased by trial and error,
keeping the strength constant, until the
program gave a factor of safety of unity.
Thus in the example under consideration
where the actual soil unit weight is

320 kN/mγ = , if a unit weight of
3100 kN/m  was needed to generate failure,

the factor of safety based on gravity
increase was calculated as

100 20 5FSγ = = .
b) An elastic-plastic finite element program1

was developed that gives users a wide
choice of ways in which to bring a slope to
the point of failure as indicated in Table 1.
All FE slope analyses were run with a non-
associated (no plastic volume change) flow
rule.

Fig. 2a, shows a gradually increasing ,tancFS φ′ ′

with increasing φ′  with both FE and Bishop
giving essentially identical results. On the other
hand, Fig. 2b indicates a steeply increasing FSγ

with increasing φ′ . At lower values of φ′  in Fig.
2b, FE and Bishop are in close agreement, but as
φ′  increases, they start to diverge which might be
expected given the different assumptions made by
the two methods, i.e. Bishop’s method searches
for a circular failure mechanism, whereas the FE
approach has no such constraint.

                                                
1 The program is freely available for download at the
author’s web site
 www.mines.edu/~vgriffit/5th_ed/Software/5th_ed.exe

cFS FSγ′ =
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Figure 2.  vs. FS φ′  for the test slope with a) Strength
reduction and b) Gravity increase.

Also shown on Fig. 2b is a vertical line
corresponding to the slope angle =33.7β °  which
is the asymptotic limit of FSγ . This limiting value
is most easily explained by considering the
equivalence of the factor of safety obtained
through gravity increase and cohesion strength
reduction as indicated in Eq.(1). As c′  is reduced
( )keeping tan  constantφ′  the slope tends to
become purely frictional with a factor of safety in
the limit given by the “angle of repose” equation.

tan
tan

FS φ
β
′

=                                   (2)

This means that  if φ β′ ≥ , it will never be
possible to fail a slope through cohesion reduction
(or gravity increase) since the frictional

component of strength is more than enough to
support the weight of the slope. On the other hand,
if φ β′ < , it can be stated that

        (3)
The contrasting shapes of the failure

mechanisms obtained by strength reduction and
gravity increase from FE analysis for the case of

30φ′ = °  are clearly shown in Figs. 3a and b. The
strength reduction case gives a circular shape
while the gravity increase case is essentially
translational.

Figure 3. Finite element failure mechanisms for the test
slope with 30φ′ = °with a) Strength reduction and b)
Gravity increase.

It may also be noted that when comparing the
results from strength reduction and gravity
increase, ,tancFS FSγ φ′ ′≥  as shown in Fig. 4 based
on FE results. The factors of safety are equal only
for the special case of 0uφ = , but the difference
between them increases rapidly as the frictional
component of strength increases, reaching a ratio
of ,tan 8cFS FSγ φ′ ′ ≈  when 30φ′ = ° .

a) Strength reduction

b) Gravity increase

as    ,     then    cFS FSγφ β ′′ → = →∞
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Figure 4. Factors of  safety by strength reduction vs. gravity
increase for the test  slope for a range of φ′  values from FE
analysis

3 A BEARING CAPACITY EXAMPLE

A bearing capacity analysis is now considered
as shown in Fig. 5, involving a rough strip footing
of width B  supported on a c φ′ ′−  soil of unit
weight γ  with a surface surcharge of q .

Figure 5. Bearing capacity of a strip footing

The ultimate bearing capacity ultq  of the footing
can be given by Terzaghi’s bearing capacity
equation

              (4)

where ,  and c qN N Nγ  are the bearing capacity
factors.
The factor of safety in bearing capacity analysis is
typically based on loads, and given by

ult
q

all

qFS
q

=                                    (5)

where allq  is the allowable design pressure that
the footing can safely support. A target factor of
safety against bearing failure of about

3qFS ≈ would typically be required in design.

An alternative approach in now proposed, using
Method 1 in Table 1, where the factor of safety
against bearing failure is instead based on strength
reduction. In this case, the strength reduction
factor of safety is defined as ,tancFS φ′ ′ , namely the
factor by which c′  and tanφ′  must be reduced in
Eq.(4) to cause failure, i.e. ult allq q= .

In order to compare qFS  and ,tancFS φ′ ′

analytically, the following bearing capacity factors
will be used

                    (6)
                                     (7)

               (8)
Eqns.(6) and (7) for cN  and qN  are

mathematically rigorous, and due to Prandtl
(1921). The Nγ  term has proved more challenging
and has no direct analytical solution. Martin
(2005) has produced exact numerical solutions
using the method of characteristics (assuming an
associated flow rule), and these results are closely
approximated by Eq.(8) from Brinch Hansen
(1970). Martin (2005) also shows that Eq.(4) with
the bearing capacity factors shown in Eqs.(6-8) is
guaranteed to give a result less than or equal to the
exact bearing capacity due to the inherent
conservatism of Terzaghi's superposition-based
approach.

Eqns.(6-8) all include the passive earth pressure
coefficient pK  which can be commonly expressed
in different several ways, e.g.

2

2

tan 45
2

1 sin
1 sin

cos
1 sin

pK φ

φ
φ

φ
φ

′⎛ ⎞= ° +⎜ ⎟
⎝ ⎠

′+
=

′−

′⎛ ⎞
= ⎜ ⎟′−⎝ ⎠

               (9)

In this work, a less familiar trigonometric
identity for pK  is used as given by Eq.(10). This
version, which expresses pK  purely in terms of

2ult c q
Bq c N qN Nγ

γ′= + +

( )tan1.5 1 tanpN K eπ φ
γ φ′ ′= −

tan
q pN K eπ φ′=

( )tan 1 cotc pN K eπ φ φ′ ′= −
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tanφ′ , has been discussed previously by Griffiths
et al. (2002), and is convenient for strength
reduction calculations based on Methods 1 and 4
in Table 1.

             (10)

In what follows, and with reference to Eq.(4),
each of the three bearing capacity factors given in
Eqs. (6-8) will be considered separately, leading
to analytical expressions relating the conventional
factor of safety based on load increase ( )qFS , to

that based on strength reduction ( ),tancFS φ′ ′ . At the
end, an example will be presented with all terms
included.
3.1 The cN  term (Eq.6)

In this case it is assumed that 0q =   and 0γ = ,
hence

( )

( )
tan

2
2 tan

=

1 cot

1= tan 1 tan 1
tan

ult c

p

q c N

c K e

c e

π φ

π φ

φ

φ φ
φ

′

′

′

′ ′= −

⎡ ⎤′ ′ ′+ + −⎢ ⎥ ′⎣ ⎦
 (11)

The strength reduction factor of safety
,tancFS φ′ ′ will bring the footing to failure, hence

(12)
which after substitution into Eq.(5) gives the
function

( )
tan

2
2 tan

2
2 tan

tan tan

tan 1 tan 1

tan tan1 1c

q

FS

c c

e
FS

e
FS FS

φ

π φ

φπ

φ φ

φ φ

φ φ ′ ′

′

′

′ ′ ′ ′

′ ′+ + −
=
⎛ ⎞⎛ ⎞′ ′⎜ ⎟+ + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(13)

qFS

FS

35φ′ = °

30φ′ = °

20φ′ = °

10φ′ = °

0uφ =

0
0
0

c

q
γ
′ ≠
=
=

Figure 6. ,tan vs.  for the  term (Eq.13)c q cFS FS Nφ′ ′

3.2 The qN  term (Eq.7)

In this case it is assumed that 0c′ =   and 0γ = ,
hence

     (14)

The strength reduction factor of safety
,tancFS φ′ ′ will bring the footing to failure, hence

tan

2
2 tan

,tan ,tan

tan tan= 1 cFS
all

c c

q q e
FS FS

φ

φπ

φ φ

φ φ ′ ′

′

′ ′ ′ ′

⎛ ⎞⎛ ⎞′ ′⎜ ⎟+ + ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(15)

which after substitution into Eq.(5) gives the
function

(16)

qFS

,tancFS φ′ ′

35φ′ = °

30φ′ = °

20φ′ = °

10φ′ = °

0
0
0

c

q
γ
′ =
=
≠

14φ′ = °

Figure 7. ,tan vs.  for the  term (Eq.16)c q qFS FS Nφ′ ′

( )
tan

2
2 tan

2
2 tan

,tan ,tan

tan 1 tan

tan tan1 c

q

FS

c c

e
FS

e
FS FS

φ

π φ

φπ

φ φ

φ φ

φ φ ′ ′

′

′

′ ′ ′ ′

′ ′+ +
=
⎛ ⎞⎛ ⎞′ ′⎜ ⎟+ + ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

( )2
2tan 1 tanpK φ φ′ ′= + +

tan

2
2 tan

tan

tan tan tan

tan tan= 1 1
tan

cFS c
all

c c c

FScq e
FS FS FS

φ

φπ
φ

φ φ φ

φ φ
φ

′ ′

′
′ ′

′ ′ ′ ′ ′ ′

⎡ ⎤⎛ ⎞⎛ ⎞′ ′ ′⎢ ⎥⎜ ⎟+ + −⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟ ′⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

( )
tan

2
2 tan

=

=

tan 1 tan

ult q

p

q qN

qK e

q e

π φ

π φφ φ

′

′′ ′= + +
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3.3 The Nγ  term (Eq.8)

In this case it is assumed that 0c′ =   and 0q = ,
hence

(17)

The strength reduction factor of safety ,tancFS φ′ ′

will bring the footing to failure, hence

(18)
which after substitution into Eq.(5) gives the
function

 (19)

qFS

,tancFS φ′ ′

35φ′ = ° 30φ′ = °

20φ′ = °

10φ′ = °

0
0
0

c

q
γ
′ =
≠
=

Figure 8. ,tan  vs.  for the  term (Eq.19)c qFS FS Nφ γ′ ′

Eqs.(13, 16 and 19) are shown plotted in Figs.6-
8 respectively for a range of valuesφ′ − . It may be
noted from Fig.6 and Fig.8 for cN  and Nγ

respectively, that ,tanq cFS FS φ′ ′>  for 0φ′ > . On

the other hand, analysis of Eq.(16) for qN  (see
Appendix) indicates that ,tanq cFS FS φ′ ′<  for all

11.08φ′ < ° , and can occur for 11.08φ′ > °  if

,tancFS φ′ ′  exceeds some critical value. This effect is
demonstrated in Fig. 7, where the line for 14φ′ = °

crosses the dashed line ( ),tanc qFS FSφ′ ′ =  at about

,tan 1.65cFS φ′ ′ = . Table 2 summarizes the transition
point at which ,tanq cFS FS φ′ ′<  for a range of φ′ .

In summary, ,tanq cFS FS φ′ ′< is only observed in
the qN term within a reasonable range of ,tancFS φ′ ′

values, when φ′ is small (e.g. 15φ′ < ° ). Higher
friction angles can also lead to ,tanq cFS FS φ′ ′< , but
only when ,tancFS φ′ ′  is unrealistically high (e.g. for

25φ′ = ° , ,tan 7.86cFS φ′ ′ > )

Fig. 9 shows plots of ,tan  vs. c qFS FSφ′ ′  for each
of the three bearing capacity factors corresponding
to 30φ′ = ° . The Nγ  and qN  lines display,
respectively, the greatest and least differences
between the factors of safety. It may be noted that
in a bearing capacity analysis of a soil with

30φ′ = ° ,  a strength reduction factor of safety of

,tan 1.5cFS φ′ ′ =  corresponds approximately to a
load  increase factor of safety in the range
2.5 3.5qFS< < .

Table 2. Ranges of ,tancFS φ′ ′  for which

,tanq cFS FS φ′ ′<  from the qN  Eq.(16)

′ (degrees)φ
′ ′tanc ,FS φ

<11.08 All
values

12 >1.18

14 >1.65

20 >4.02

25 >7.86

( )

( )

tan

2
2 tan

=
2

= 1.5 1 tan
2

3= tan 1 tan 1 tan
4

ult

p

Bq N

B K e

B e

γ

π φ

π φ

γ

γ φ

γ φ φ φ

′

′

⎡ ⎤′−⎣ ⎦

⎡ ⎤′ ′ ′+ + −⎢ ⎥⎣ ⎦

tan

2
2 tan

tan tan tan

3 B tan tan tan= 1 1
4

cFS
all

c c c

q e
FS FS FS

φ

φπ

φ φ φ

γ φ φ φ′ ′

′

′ ′ ′ ′ ′ ′

⎡ ⎤⎛ ⎞⎛ ⎞′ ′ ′⎢ ⎥⎜ ⎟+ + −⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

( )
tan

2
2 tan

tan

2
2 tan

tan tan

tan 1 tan 11

tan tan1 1c

c

q

FS

c c

e FS
FS

e
FS FS

φ

π φ
φ

φπ

φ φ

φ φ

φ φ ′ ′

′
′ ′

′

′ ′ ′ ′

⎡ ⎤′ ′+ +⎢ ⎥⎣ ⎦=
⎛ ⎞⎛ ⎞′ ′⎜ ⎟+ + −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
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qFS

,tancFS φ′ ′

Nγ

cN

qN

3.4    Example problem including all terms
(Eq.4)

In order to include all the terms of the bearing
capacity equation, an example from Salencon and
Matar (1982) is now considered where, with
reference to Fig. 5, 30φ′ = ° , 16 kPac′ = ,

318 kN/mγ = , 4mB =  and 18 kPaq = .

Based on Eqs.(4 and 6-8), the bearing capacity
factors are 30.1cN = , 18.4qN =  and 15.1Nγ = ,
and the bearing capacity is given by

(20)

3.4.1 Load increase
If a typical load-based factor of safety against

bearing failure of 3qFS =  is used, this leads to an
allowable bearing pressure of

(21)

3.4.2 Strength reduction
The value of ,tancFS φ′ ′  that would be needed to

reduce the bearing capacity given in Eq.(20) from
1356 kPaultq =  to 452 kPault allq q= = is given by

the  nonlinear equation

tan

tan

2
2 tan30

tan tan

2
2 tan30

,tan ,tan

tan

tan 30 tan 30 1452 16 1 1
tan 30

tan 30 tan 3018 1

3 18 4 tan 30 tan 31
4

c

c

FS

c c

FS

c c

c

e
FS FS

e
FS FS

FS

φ

φ

π

φ φ

π

φ φ

φ

′ ′

′ ′

°

′ ′ ′ ′

°

′ ′ ′ ′

′ ′

⎡ ⎤⎛ ⎞⎛ ⎞° °⎢ ⎥⎜ ⎟= + + − +⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟ °⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞⎛ ⎞° °⎜ ⎟+ + +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

× × °
+ + tan

2
2 tan30

tan tan

0 tan 301cFS

c c

e
FS FS

φ
π

φ φ

′ ′

°

′ ′ ′ ′

⎡ ⎤⎛ ⎞⎛ ⎞° °⎢ ⎥⎜ ⎟ −⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

 (22)
which after solution gives

(23)
This example gives  ,tan2q cFS FS φ′ ′≈  , which is

to be expected for bearing capacity on a soil with.
30φ′ = °  It is clear from the examples considered,

that geotechnical design is more sensitive to
strength reduction than load increase, i.e. an
allowable bearing capacity based on

,tan 1.5cFS φ′ ′ = (say) will be considerably lower
(more conservative) than one based on 1.5qFS = .

4 CONCLUDING REMARKS

The paper has examined differences between
the factor of safety defined by strength reduction
( ),tancFS φ′ ′  and that defined by gravity increase

( )FSγ   in slope stability or load increase ( )qFS  in
bearing capacity.

Analysis of a slope stability example showed
that in all cases considered in which  0φ′ > ,

,tancFS FSγ φ′ ′> . In part, this is due to the
appearance of unit weight  in both the numerator
and denominator of the factor of safety equation,
but more significantly, for slopes inclined at β   to
the horizontal, it was shown that as FSγ → ∞ ,
φ β′→ , i.e. a slope in which φ β′ >  can never be
brought to failure by gravity increase.

Analysis of the bearing capacity equation led to
the development of closed form expressions
directly relating qFS  to ,tancFS φ′ ′  for each of the
three bearing capacity factors.  As before, it was
observed that when  0φ′ > , ,tanq cFS FS φ′ ′>  for
nearly all cases, except for low values of φ′  in the

18 416 30.1 18 18.4 15.1
2

1356 kPa

ultq ×
= × + × + ×

=

1356 452 kPa
3allq = =

,tan 1.60cFS φ′ ′ =
,tanFigure 9.   vs.  for =30c qFS FSφ φ′ ′ ′ °
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termqN − . A bearing capacity example involving
a soil with 30φ′ = °  and all terms of the bearing
capacity equation present, led to ,tan2q cFS FS φ′ ′≈ .
The difference would be greater with higher
friction angles, however the result suggests that
for a typical friction angle, a target factor of safety
based on strength reduction of around

,tan 1.5cFS φ′ ′ ≈  is not significantly different to a
target factor of safety based on load increase of

3.0qFS ≈ .  In general, the results further
demonstrate the greater sensitivity of geotechnical
design outcomes to strength factoring over load
factoring.

5 NOTATION

6 APPENDIX

From Figure 3 it is clear that ,tanq cFS FS φ′ ′≤ in
certain ranges. For example, when 14φ′ = °  cross-
over occurs at about ,tan 1.65cFS φ′ ′ =  while when

10φ′ = °   there appears to be no cross-over.

To examine this limiting condition more closely
(Martin 2015), let ,tanq cFS FS Fφ′ ′= =  and solve
for tanφ′ . Let  tan tφ′ =  for algebraic simplicity,
and write Eqn.(16) as

Clearly 0V =  when 1F =   for all t , so
examine the value of t  when 0V =   and 1F ≈ .

Let 1F ε= +  where ε  is small. Then

,tan
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FS-  and tan  strength reduction
FS-unit weight γ increase
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′ ′
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β Slope angle
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For 0V =  when ε  is small, it must be the case
that

Solving for t  gives tan 0.1959t φ′= =  and
11.08φ′ = °  hence ,tanq cFS FS φ′ ′<  in the qN  term

provided 11.08φ′ < °
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