
1 INTRODUCTION 

1.1 Overview 

Over the past few years, the authors have been work-
ing towards a generalised method of parallel finite 
element analysis based on an element-by-element so-
lution strategy using iterative solvers. Further details 
are given in the 5

th
 edition of “Programming the Fi-

nite Element Method (Smith et al. 2014).  
The resulting software has been released as the 

freely downloadable open source “ParaFEM” project 
(http://parafem.org.uk). The software has benefited 
research in a broad range of disciplines including 
geomechanics (Smith and Margetts 2003), palaeon-
tology (Falkingham et al. 2009, 2011), nuclear mate-
rials (Evans et al. 2013, Evans 2013) and 
geodynamos (Chan et al. 2006, 2007).   

This previous work has focused on "fixed mesh" 
solutions.  In some problems, geometry changes rad-
ically as the solution progresses.  In geotechnical en-
gineering, the construction process of excavation is a 
typical example.  

Change in geometry occurs when material is re-
moved from the ground in either open excavations or 
in enclosed tunnels.  In many real engineering situa-
tions, the natural geometry of geological units neces-
sitates three-dimensional analysis, leading to a finite 
element representation with many millions of de-

grees of freedom.  Algorithms for non-linear elasto-
plasticity are needed to adequately capture the physi-
cal response of the soil each time material is re-
moved.  Large problem size and complex material 
behaviour lead to heavy computational demands, 
both in terms of storage (memory) and solution time.  
For spatially random soil, analyses may have to be 
repeated many times to develop statistically mean-
ingful results.  These difficulties can be overcome by 
parallel computation.  Once an analysis is complete, 
interpretation of the results presents a further chal-
lenge, benefiting from high performance visualisa-
tion techniques.  In the context of solving and inter-
preting large three-dimensional excavation 
problems, this paper describes the authors' work in 
parallel computation and virtual reality visualisation.  
The ultimate aim of the research is to enable the ge-
otechnical engineer to perform “Virtual Excavation”.  

1.2 Example 

A rather geometrically simple geotechnical problem 
is presented, namely the excavation of a large hole in 
the ground.  In finite element terms, the soil is repre-
sented by a cubic domain of 20-noded hexahedral 
bricks.  The base of the domain is fixed and the sides 
are on rollers.  In total the model has around 1.5 mil-
lion equations and more than 100,000 elements.  
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To make the problem more geologically realistic, 

the properties of the soil can be assigned statistically 
(Fenton and Griffiths, 2008).  Figure 1 shows a typi-
cal “realisation” with the light to dark shading repre-
senting the variation over the soil property range (of 
stiffness and strength in this case).  In this way, the 
natural variation of weaker and stronger areas can be 
captured.  In Figure 1, dark and light shading repre-
sent strong and weak material respectively.  The pix-
ilation highlights the discretisation of the mesh used.  
Each finite element is assigned its own properties, 
represented visually in greyscale.  In real situations, 
the use of stochastically generated soil properties 
implies that many “realisations” may be required for 
a single geotechnical design. 

2 SOFTWARE 

2.1 Parallel Strategy 

The program used is an amalgamation of Programs 
6.9 and 6.10 from Smith et al. 2014 parallelised 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
according to the methods described in Chapter 12 of 
that reference. It is freely downloadable from the in-
ternet.  It was written using Fortran2003 and is based 
on an element-by-element approach. 

A preconditioned conjugate gradient (PCG) solver 
was used together with a diagonal preconditioner to 
solve the system of equations.  Plasticity was dealt 
with using a consistent return algorithm.  Parallelisa-
tion was achieved by simply inserting routines from 
ParaFEM, into what was essentially a serial code. 

2.2 Excavation Pseudo-code 

In the parallel program, each core in a multi-core 
processor executes instructions according to the 
pseudo-code below:  
 
Initialise 

READ input data on one core and distribute 

DO for local elements 

 Calculate starting stresses 

END DO 

DO Excavate Layer 

Figure 1. Excavation geometry shaded according to randomized material properties. 



 DO for local elements 

  Calculate excavation loads 

 END DO 

 DO for local elements 

  Calculate stiffness & preconditioner 

END DO 

 DO Apply Load Increment 

  DO Apply Plasticity Increment 

   Solve using Element-by-Element PCG 

   DO for local elements 

    Check yield surface & Update gauss point stress 

    Compute bodyloads vector 

         END DO 

  END DO 

 END DO 

 WRITE collect results and write on one core 

END DO 

 
The random fields are generated externally to this 
program using the driver program RFEMFIELD 
(freely available with ParaFEM) that calls subrou-
tines distributed with the Fenton and Griffiths (2008) 
text book. The fields generated are for cubic do-
mains and the RFEMFIELD software uses Boolean 
operations and interpolation to map the fields onto 
irregular geometries if required.  

The random field generation software could be in-
tegrated into this program as a further outer loop. 
However, in the current implementation, we have 
distinct programs that can be joined together in a 
workflow. This could be considered inefficient com-
putationally as it uses files to exchange data between 
programs. However, it has benefits for those wishing 
to understand or modify source code. Each program 
is short and self contained. Furthermore, this strategy 
makes it easier to distribute the computation on 
Cloud Computing platforms such as Window Azure. 

2.3 Performance 

As the problem is non-linear, requiring the execution 
of many load increments, most of the computation 
time is spent in the PCG solver. This is executed in 
parallel and each processing core works on its allo-
cated set of elements. Table 1 presents some perfor-
mance figures for a single load step using the PCG 
solver for different sizes of problem. The largest 
problem shown in the table has more than one bil-
lion degrees of freedom. As indicated in the table, 
this corresponds to a 400x400x400 cube of 20-node 
bricks. In 2D, 400x400 is considered a small prob-
lem. In 3D, this resolution is beyond the capability 
of commercial software packages.  

The system used is HECToR, a Cray XE6 which 
is provided by the UK National HPC Service. The 
system comprises a total of 704 compute blades. 
Each blade contains four compute nodes giving a to-
tal of 2816 compute nodes, each with two 16-core 

AMD Opteron 2.3GHz Interlagos processors. This 
amounts to a total of 90,112 cores. Each 16-core 
socket is coupled with a Cray Gemini routing and 
communications chip. Each 16-core processor shares 
16GB of memory, giving a system total of around 90 
TB. The theoretical peak performance of the system 
is over 800 Teraflops. For some problems, ParaFEM 
has been shown to make good use of 32,000 cores. 
 
Table 1.  Performance statistics ______________________________________________  
Mesh     Equations     Cores   Time(secs) ______________________________________________ 
40x40x40   777,520         8   96      
               16   48      
                 32   25      
               64   14      
             128     8      
 
100x100x100  12,059,800      16         486     

32     265 
               64     140 
             128    83    
         
400x400x400  1,023,368,720    1024   2721     
               2048   1213 
               4096     662  _____________________________________________ 

 
The success of iterative methods depends on the 

number of iterations for convergence as a proportion 
of problem size (Smith and Wang, 1998). This is il-
lustrated in Table 2 for a single load increment. For 
some types of problem, running on different num-
bers of cores may lead to different iteration counts. 
This is because of the effect of roundoff, particularly 
when values are summed across cores. The iterative 
solvers used compensate for this effect and always 
give the same engineering answer to the required 
tolerance (Smith and Margetts, 2006). 
 
Table 2.  Iterations to convergence vs problem size ______________________________________________  
Problem Size     Iterations     Iters/size 
         To convergence ______________________________________________ 
            12,000       156     1.30E-2 
            98,000       297     3.03E-3 
          777,000       568     7.31E-4 
       1,514,000       704     4.65E-4 
       2,613,000         838     3.21E-4 
       6,812,000     1049     1.54E-4 
     12,059,000     1297     1.07E-4 
   768,959,200     3963     5.15E-6 
1,023,368,720     4152     4.06E-6   _____________________________________________ 

2.4 Cloud Computing 

Here, the Monte-carlo stochastic finite element anal-
yses proceed by running essentially the same prob-
lem many times with different initial randomly gen-
erated material properties. Computer scientists refer 
to Monte-carlo simulations as “embarrassingly paral-
lel” as each analysis is completely independent of 
the others. It each individual analysis fits within the 



available memory, the most efficient strategy is to 
run many single core jobs.  

A number of companies, such as Amazon, Google 
and Microsoft own vast server farms which have a 
capacity designed to cope with surges in demand, for 
online shopping, search and software development 
respectively. They hire out their excess capacity 
through Cloud Computing services. If an engineer 
wished to run 1,000 realizations of a 3D excavation 
problem, they could purchase 1,000 “instances” of a 
virtual machine, each with 8 cores say, for a very 
short period of time. This is particularly attractive 
for small engineering firms or independent consult-
ants as they do not need to invest in their own infra-
structure. Typical costs are shown for Microsoft Az-
ure in Table 3.  

 
Table 3.  Typical costs: Microsoft Azure ______________________________________________ 
Size    Cores  Cost (month)  Cost (hour)    ______________________________________________ 
Extra small Shared       $9.36   $0.013 
Small   1       $57.60   $0.08 
Medium   2    $115.20    $0.16 
Large   4    $230.40    $0.32 
Extra large  8    $460.80    $0.64 _____________________________________________ 

 
It should be noted that Cloud Computing services 
typically provide “virtualized” hardware. Virtualiza-
tion incurs a performance penalty and the author’s 
tests show that individual jobs can take ten times 
longer than on the “native” hardware (Christias 
2013). Table 4 compares the time for a single load 
step of one realization using a single core on Mi-
crosoft Azure and a single core on a Cray XE6.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.  Microsoft Azure vs Cray XE6 ______________________________________________  
Number of Elements  Azure (s)   Cray XE6 (s) ______________________________________________ 
      82,944          65         6 
    196,608        160       18 
    384,000        374       38 
    663,552        722       78 
1,572,864        8,906        798 
5,308,416      11,985     1,558 _____________________________________________ 

3 RESULTS 

3.1 Visualization 

It may well be that a principal impediment to the use 
of three-dimensional computations in geomechanics 
is not so much concerned with doing the calcula-
tions, but rather with the difficulty of visualizing the 
results. For this reason, we have added support for 
the open source visualization tool ParaView to the 
5

th
 edition of the textbook.  
ParaView is a GUI based tool which runs on both 

Windows and Linux platforms. It has parallel pro-
cessing capability and can be used in client-server 
mode. For very large models, rendering can be per-
formed on a remote cluster with the display exported 
to a local desktop system. ParaView also supports 
Python scripting which can help automate results 
processing, particularly important when executing 
100s of realizations in a stochastic analysis. Fur-
thermore, support is provided for easy output into 
immersive Virtual Reality facilities. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Excavation sequence. 

Figure 3. Magnitude of displacement in homogeneous soil using zebra contouring. 



3.2 Deterministic Analysis 

The response of the homogeneous ground to the re-
moval of the soil is illustrated in Figures 2 and 3.  
The images show a cross-section through the domain 
as the interest lies in the deformation of the excava-
tion walls.  The magnitude of displacement varies 
greatly from one step to the next, therefore the imag-
es are not plotted to the same scale. 

In Figure 2, a wireframe model is used to show the 
excavation sequence.  Arrows are used to indicate 
the direction of the ground movements.  As the ex-
cavation is deepened, the initial uplift at the surface 
and heave at the base of the excavation is followed 
by downward flow and eventual collapse. 

Figure 3 shows the magnitude of the displace-
ments.  The colour map used consists of a number of 
evenly spaced black stripes, which appear as 
isocontours on the volume.  In the gaps between the 
black stripes there is a continuous graduation of col-
our which indicates the magnitude of the 
isocontours.  A black stripe on the volume which has 
a very light surround is data with a high magnitude 
of displacement while a black stripe on the volume 
with a dark surround is data with a low magnitude of 
displacement. 

Why use black stripes?  Removal of the stripes 
would leave a grey-scale shading that is typical of 
contemporary FEA visualisation.  The stripes serve 
to highlight the variation in displacement that the 
eye cannot pick up with the greyscale shading alone. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3 Randomised Soil 

Figures 4 and 5 show a typical realization of an ex-
cavation through randomised soil.  The style of the 
visualizations is not the same as Figures 2 and 3.  
This is intentional as the authors wish to highlight 
some visualisation techniques. 

The grey shading in Figure 4 does not represent 
any geomechanical property.  A virtual light illumi-
nates the scene, causing reflected highlights (light 
grey) and casting shadows (dark grey).  The reason 
lighting is used is to pick out regions of deformation.  
Rippling occurs at the excavation boundaries and the 
excavation walls bulge non-symmetrically as failure 
is approached. Although these features are difficult 
to represent on paper, the visualization package can 
display stereoscopic images on a desktop PC 
(equipped with reasonable graphics card and cheap 
stereoscopic glasses), a 3D television or in a more 
expensive virtual reality centre. 

The difference between deformation in a homoge-
neous and randomised soil is quite straightforward.  
In the homogeneous case, deformation is symmetric, 
whereas in the more natural randomised soil, defor-
mation is influenced by the strength distribution.  In 
this case, the soil is relatively weak on the left hand 
side of the excavation and relatively strong on the 
right hand side. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 4. Virtual illumination of deformation in randomized soil. 

 

Figure 5. Magnitude of displacement in randomised soil using a randomised colour map. 

 



Figure 5 (compare with Figure 3) highlights the in-
fluence of the non-homogeneity on the displacement 
profile.  A randomised, alternating light and dark, 
colour map is used to represent the magnitude of 
displacement.  This colour map gives added clarity 
compared with traditional grey-scale shading. 

4 CONCLUSIONS 

3D geotechnical excavation has been modelled using 
freely downloadable software and visualized using 
an open source program.  In the example excavation 
only 1.5 million equations have been used but the 
authors have shown the software is capable of solv-
ing systems with a billion or more equations. The 
software can run on supercomputers with up to 
32,000 cores.  

Virtualized hardware provided by companies of-
fering Cloud Computing services brings stochastic 
finite element modeling within the reach of most en-
gineering firms, at a reasonable cost. 

Current research in supercomputing is aimed at 
building an Exascale computer, one that is capable 
of performing 10

18
 operations per second, by the 

year 2020. It is thought that programs running on 
such systems will need to cope with many millions 
of threads of execution. In that case, we anticipate 
that the program used in this paper will require a 
new parallelization strategy, perhaps using thou-
sands of GPUs or many-core processors such as In-
tel’s recently launched Xeon Phi.  

Programming is becoming harder and the number 
of engineers with programming skills fewer. There-
fore, progress in geomechanics would benefit from 
community-based software development through the 
open source movement.   
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