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ABSTRACT: A review of theoretical probabilistic models devised over the last decade for 

geotechnical reliability-based design reveals that they generally follow the same form. That form can 

be used to develop a unified reliability-based design approach that includes the effects of spatial 

variability in the ground, site understanding, and the severity of failure consequences. This paper 

develops and describes the resulting unified model, along with recommendations regarding its use in 

practice. The approach can be used to directly provide required resistance factors for use in an LRFD 

format. 

1. INTRODUCTION 

There is a real desire in the geotechnical 

community to account for site understanding in 

the process of achieving economical, yet safe 

geotechnical designs. To accomplish this, it 

makes sense to have a resistance factor which is 

adjusted as a function of site understanding and 

that allows maintaining overall safety at a 

common target maximum failure probability as 

well as to demonstrate the direct economic 

advantage of increased site understanding.  

The overall safety level of any design 

should depend on at least three factors: 1) the 

uncertainty in the loads, 2) the uncertainty in the 

resistance, and 3) the severity of the failure 

consequences. In most modern codes, these three 

items are assumed independent of one another 

and are thus treated separately. The load factors 

handle the uncertainties in the loads and, on the 

load side, failure consequences are handled by 

applying an importance factor to the more 

uncertain and site specific loads (e.g. earthquake, 

snow, and wind). Uncertainties in resistance are 

handled by resistance factors that are usually 

specific to the material used in the design. When 

dealing with a highly variable and site specific 

material such as the ground, it makes sense to 

apply a factor that depends on both the resistance 

uncertainty and on the consequences of failure. 

Similar to the multiplicative approach taken in 

structural engineering, where the overall load 

factor is a product of a load factor and an 

importance factor, the overall resistance factor 

applied to geotechnical resistance is taken here to 

consist of two parts which are multiplied 

together; 

1. a resistance factor, gu or gs ,which accounts  

for resistance uncertainty. This factor aims to 

achieve a target maximum acceptable failure 

probability equal to that used for 

geotechnical designs for typical failure 

consequences.  

2. a consequence factor,  , which accounts for 

failure consequences. Essentially, 1  if 

failure consequences are low and 1 if 
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failure consequence exceed those of typical 

geotechnical systems. The basic idea of the 

consequence factor is to adjust the maximum 

acceptable failure probability of the design 

down for high failure consequences, or up for 

low failure consequences.  

This paper will consider limit state design (LSD) 

of geotechnical systems within a load and 

resistance factor design (LRFD) framework. The 

goal is to provide a single theoretical model 

which can be used to determine the resistance 

and consequence factors required to achieve a 

target maximum acceptable failure probability 

for a variety of geotechnical design problems. 

Within the LRFD framework, geotechnical 

designs proceed by adjusting the resistance 

parameters (usually the foundation geometry) so 

that the factored geotechnical resistance at least 

equals the effect of factored loads. For example, 

for ultimate limit states (ULS), this means that 

the geotechnical design should satisfy an 

equation of the form 

 ˆ ˆ
u gu u i i iR I F     (1) 

in which u is a consequence factor, gu is the 

geotechnical resistance factor, and ˆ
uR is the 

characteristic ultimate resistance, all at the ULS. 

The right-hand-side consists of iI , an importance 

factor, multiplying the i
th

 factored load effect, 

ˆ
i iF . A similar equation must be satisfied for 

serviceability limit states (SLS), with the 

subscript u replaced by s. 

Since the focus of this work is on calibrating 

resistance and consequence factors, which are 

applied to the characteristic resistance, the 

importance factors, iI , will be assumed to have 

values 1.0. In addition, only dead and live loads 

will be considered in this study. If the 

characteristic total load, ˆ
TF  , is defined as the 

sum of the factored characteristic loads, 

 
ˆ ˆ ˆ for ULS design  

   ˆ ˆ for SLS design       
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where it is assumed that the SLS load factors are 

1.0, then the LRFD eq. (1) simplifies to 
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  (3) 

for the ULS and SLS cases, respectively. Three 

failure consequence levels will be considered in 

this paper; 

1) high consequence: failure of the supported 

structure  has large safety and/or financial 

consequences (e.g., hospitals,  schools, and 

lifeline highway bridges), 

2) typical consequence: has failure 

consequences typical of the  majority of civil 

engineering projects, and 

3) low consequence: failure of the supported 

structure has little  or no safety and/or 

financial consequences (e.g., low use storage  

facilities or low use bridges). 

Most designs will be aimed at the typical failure 

consequence level.  

2. THEORETICAL FAILURE PROBABILITY 

AND DERIVED DESIGN FACTORS 

The theoretical framework required to estimate 

the failure probability of a geotechnical system 

should consider; 

1) uncertainty in the loads, and 

2) uncertainty in the resistance, including 

random field models of the  ground to 

characterize its natural spatial variability, 

along with  prediction model uncertainty, and 

uncertainty in ground strength  parameters 

(due to measurement errors and lack of 

sufficient sampling)  within the zone of 

influence under and around the foundation 

being  designed. 

In its simplest form, a geotechnical system fails 

if its actual resistance, R, is less than the 

supported total load, TF , any time during the 

system's design life. For example, Figure 1 

illustrates a bearing failure mechanism which 

might occur at an instant in time during the 

design life of a footing. Rather than the 

traditionally assumed symmetric double log-

spiral failure mechanism predicted when the 

ground properties are spatially constant, the 

failure mechanism that occurs when ground 
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properties vary spatially follows the weakest 

path, resulting in non-symmetric and sometimes 

quite erratic failure paths (Fenton and Griffiths, 

2008).  

 

 
Figure 1: Bearing failure of a shallow foundation on 

a spatially variable soil. 

 

The major challenge in reliability-based design is 

how to capture the weakest path behaviour of the 

ground in a way that is simple enough to use in 

practice.  The key to answering this question is to 

replace the spatial variability of the ground by a 

single random variable which yields the same 

probabilistic behaviour as the spatially variable 

ground. In other words, is there a single random 

variable which gives the same failure probability 

as does the random field? Clearly, there must be. 

Consider, for example, the settlement of a 

shallow foundation where performance failure is 

defined as the event that the actual foundation 

settlement,  , exceeds the serviceability limit, 

max , i.e., 

  Pf maxp     (4) 

The actual settlement,  , is a function of the 

random loads the foundation sustains over time, 

the foundation geometry, and the random 

(usually non-linear and time varying) 

compressibility field of the ground under the 

footing. Thus,  is a very complicated function 

of many random variables. Nevertheless,  is a 

single random variable which has some 

distribution. If that distribution can be found, 

then fp  can be determined. 

To illustrate the process in a geotechnical 

context, consider the bearing failure of a strip 

footing supported by a c   soil, as shown in 

Figure 1 (following Fenton et al., 2008). To 

simplify the illustration, the soil will be 

considered weightless with no foundation 

embedment nor surcharge. 

The characteristic resistance becomes 

 ˆ ˆˆ
u cR BcN   (5) 

where B is the footing width, ĉ  is the 

characteristic cohesion, and the characteristic 

bearing capacity factor, ˆ
cN , is given by (see e.g., 

Prandtl,1921, and Griffiths et al., 2002) 

 
 

2
2ˆ ˆ ˆexp{ tan } tan 1 tan 1

ˆ
ˆtan

cN
   



  
  (6) 

The characteristic ground parameters (e.g., 

cohesion and friction angle) are obtained through 

a site exploration program. Although the 

definition of ‘characteristic’ varies quite widely 

around the world, it is assumed here that the 

characteristic values are ‘a cautious estimate of 

the mean ground parameter’. They will be taken 

to be some sort of average, usually a geometric 

average since it is low-strength dominated, of the 

soil sample.  

Using eq. (5) in eq. (6), the LRFD equation 

becomes 

 ˆ ˆ ˆˆ
u gu c L L D DBcN F F       (7) 

which, taken at the equality, allows the footing to 

be designed, 

 
ˆ ˆ

ˆˆ
L L D D

u gu c

F F
B

cN

 







  (8) 

Failure of the footing occurs if the actual total 

load on the footing, T L DF FF  , where LF is the 

actual live load and DF is the actual dead load 

(both random), exceeds the actual (random) 

resistance. The probability of failure is thus 

 P
gf T g cF Bp c N  

 
  (9) 

where gc and
gcN are some sort of averages of the 

random cohesion and friction fields, taken in the 

vicinity of the footing, such that the product 

gg cc N B has the same distribution as the actual 

resistance of the spatially variable ground. Past 

research by the authors has shown that gc   and 
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gcN are well approximated by suitably selected 

geometric averages of c and  in the vicinity of 

the foundation. Substituting eq. (8) into eq. (9) 

and collecting all random variables to the left 

side of the inequality leads to 

 
ˆ ˆˆ

P

g

c T
f T

g c u gu

cN F
F

c
p
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  (10) 

If we let 

 
ˆˆ

g

c
T

g c

cN
W F

c N
   (11) 

then the failure probability can be written in 

general terms (for either ULS or SLS by 

dropping the $u$ subscript on the resistance and 

consequence factors) as 

 
ˆ

P T
f

g
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  (12) 

The random variables on the right-hand-side of 

eq. (11) are all assumed to be lognormally 

distributed. If this assumption is true, then W is 

also (at least approximately) lognormally 

distributed, so that 

 
lnW
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ˆln ln ln
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  (13) 

where  is the cumulative standard normal 

distribution function. Noting that the probability 

of failure can be expressed in terms of the 

reliability index,  , as 1 ( )fp   , then an 

explicit expression for the total factor applied to 

the resistance, is 

 
 ln ln

ˆ

exp

T
g

W W

F


 
 


  (14)  

Eq's (13) and (14) can be used to determine the 

failure probability and total resistance factor for 

many geotechnical problems, so long as suitable 

averaging regions can be found under or around 

the geotechnical system.  It is expected that the 

only geotechnical problems which cannot be 

easily handled by eq’s (13) and (14) are slope 

stability and problems where the soil acts as both 

the load and the resistance (e.g., some retaining 

wall systems). In addition, it is found that usually

ln ln TW F  and that 
lnW  has a form which is 

common to most geotechnical problems. 

For the bearing capacity of a strip footing, 

the parameters of the lognormally distributed 

random variable W are obtained by looking at the 

mean and variance of lnW , where 

 ˆˆln ln ln ln ln ln
gT g c cW F c c N N      (15) 

Now assume that ĉ and gc are defined as 

geometric averages over the sample volume and 

over some suitable volume under/around the 

foundation, respectively. If so, then ˆln c and 

ln gc are arithmetic averages of  ln c x , 

 

1
ˆln ln ( )

1
ln ln ( )

s

f

V
s

g
V

f

c c x dx
V

c c x dx
V









  (16) 

where x   is spatial position, sV is the volume of 

the soil sample, and fV is the suitably selected 

volume of the averaging region in the vicinity of 

the foundation. The main difficulty with the 

solution of eq's (13) and (14) is with the selection 

of an appropriate averaging region, fV . 

In order to solve eq's (13) and (14), the 

mean and variance of lnW must be found. The 

mean is relatively simple if the ground is 

assumed to be statistically stationary (the mean 

and covariance structure remains constant over 

space), so that 

 
ˆln ln ln

ˆ ln lnln

g

c cc g

c c c

N NN

  

  

 

 
  (17) 

which gives 

 
ln ln TW F    (18) 

The variance of lnW is complicated by the 

random field model of the ground. As mentioned 

above, the basic idea is to replace the spatial 

variability of the actual ground with suitably 

defined local averages. Figure 2 illustrates the 

local averages involved: one local average under 

the footing is the region fV , and if the size of fV
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is properly selected, then the ground properties 

averaged over fV will have approximately the 

same bearing capacity distribution as the actual 

ground. Because the bearing failure follows the 

weakest path through the ground, a geometric 

average has been found to be appropriate (Fenton 

et al., 2008). Similarly, in order to perform the 

design, the ground will have been sampled at 

some location and then the characteristic ground 

parameters used in the design would be some 

sort of average of the sample values. If it is 

assumed that the soil sample is actually a CPT 

sounding of depth H at some location r away 

from the center of the footing, then the 

characteristic ground parameters would be an 

average of the observations over the volume sV . 

It will be assumed here that a CPT sounding 

reflects the soil's strength parameters over a 

region around the cone of width x and it is 

further assumed that the appropriate average to 

use is again a geometric average. 

 
Figure 2. Averaging regions used to predict 

probability of bearing capacity failure. 

 

If the load, TF , and ground strength parameters, 

in this case c and , are assumed to be mutually 

independent then, to at least first order (see 

Fenton et al., 2008, for details), 

  2 2 2 2

ln ln ln ln 2
T cW F c N f s fs              (19) 

where f is the variance reduction due to 

(geometric) averaging over a suitable region 

 fV under or around the foundation, 
s is the 

variance reduction due to (geometric) averaging 

over the soil sample volume (
sV ), and fs is the 

average correlation coefficient between the 

region fV and the region
sV . The last is really a 

reflection of how well the soil sample describes 

the nature of the ground under the footing. As r 

increases, it is expected that fs will decrease, 

indicating that the ground conditions at the 

footing are less well predicted by the sample. In 

this way, the degree of ‘site understanding’ that 

goes into the design of the footing can be 

reflected by adjusting r. If a designer has high 

confidence in their understanding of the ground 

parameters under the footing being designed, 

then that corresponds to a small value of r in this 

model. Conversely, low understanding of ground 

properties under the footing corresponds to a 

large value of r. In detail, 
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  (20) 

where   and  are spatial positions and 

returns the correlation coefficient between two 

points in the ground separated by distance  .  

The averaging volume, sV , is usually 

known, at least approximately, and will be one of 

the following values; 

1) for 1-D averaging, sV H  , 

2) for 2-D averaging, sV x H    , 

3) for 3-D averaging, sV x x H     . 

The main challenge at this point is to decide on 

the appropriate size of the averaging volume, fV . 

The geotechnical failure mechanism below (or 

around) the foundation usually involves some 

averaging of the strength or deformation 

properties of the ground and the size of fV
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should properly reflect the actual averaging. This 

means that fV is dependent on the size of the 

foundation itself, which means that, strictly 

speaking, fV is not known until after the 

foundation is designed (which means that the 

resistance factors need to be known before fV

can be determined). 

In some cases, the variance reduction factor, 

f , and the average correlation, fs , are not very 

sensitive to fairly significant changes in fV . This 

mean that fV can sometimes be reasonably 

approximated by using a `typical' design, perhaps 

based on the mean ground properties and a 

typical (or traditional) resistance factor. In other 

cases, the variances and correlations are more 

sensitive to the size of fV , in which case an 

iterative approach provides better results. If 

iteration is required, the basic algorithm to be 

used is as follows; 

1) choose a reasonable starting value for the 

total resistance  factor ( )g , 

2) find the minimum foundation dimensions 

which satisfy the  LRFD requirements (see 

eq. 3), 

3) set the fV averaging domain as some 

appropriate function of the  foundation 

dimensions (this step will be discussed in 

more detail  for each geotechnical problem 

considered shortly), 

4) compute f , s , and fs according to  eq's 

(20), 

5) use eq. (19) to compute
2

lnW , 

6) update the total resistance factor ( )g   

according to eq. (14). Compute the failure 

probability, fp , according to eq. (13) if 

desired. If the total resistance factor  has 

changed by only within some relative error 

tolerance (e.g.,  0.001), or if fp is within 

some relative error tolerance from the  target

mp , then the iterations can stop. Otherwise, 

repeat from  step 2 using the adjusted value 

of the total resistance factor. 

Once the total resistance factor, ( )g , has been 

determined for a variety of values of the target 

failure probability, mp , the consequence factor, 

 , is determined rather simply. Consider again 

the bearing capacity problem and assume that the 

total resistance factor has been determined for 

1/1000mp  (low consequence), mp  1/500 

(typical consequence) and 1/10000mp  (high 

consequence). Denoting the corresponding total 

resistance factors ( )u gu low , ( )u gu typ , and

( )u gu high , then assuming that 1.0u   for the 

typical case, we get 

 
   

   

low consequence: /

high consequence: /

u u gu u gulow typ

u u gu u gu typhigh

 

 

   

   
 (21) 

3. FACTORS FOR THE ULS DESIGN OF 

SHALLOW FOUNDATIONS 

To illustrate the above theory, the required 

resistance and consequence factors for the ULS 

bearing capacity design of a shallow foundation, 

with parameters as given in Table 2, will be 

considered. The characteristic factored load, ˆ ,TF

assumes live and dead load factors of 1.5L    

and 1.25D  along with live and dead load bias 

factors of 1.41 and 1.18, respectively.  

 

Table 2: Parameters used in the investigation of 

required resistance and consequence factors for 

the ULS design of shallow foundations. 

Parameter Value 

,c cv   100 kN/m, 0.3 

, ,min max s    10 ,30 ,3o o   

,L Lv   200 kN/m, 0.3 

,D Dv   600 kN/m, 0.15 

ˆ
TF   1308 kN/m 

,x H   0.15 m, 4.8 m 

   0.1 to 50 m 
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The main features of the ULS reliability-based 

design of a shallow foundation can be found in 

Fenton et al. 2008). They found that fV is well 

approximated by a square of dimension C C  

centered under the footing (see Figure 2), where 

C is about 80% of the mean depth of the classical 

wedge failure zone given by Prandtl, 

 
0.8

ˆ tan
2 4 2

BC



 

  
 

  (22) 

In the above, ˆ
B is an estimate of the mean 

footing width obtained by evaluating eq. (8) at 

the mean of the ground properties 

 
ˆ

ˆ
0.7

c

T
B

c N

F


 
   (23) 

Using this result in eq. (23) to define fV C C 

allows the results of the previous section to be 

used to find the failure probability and resistance 

factors required to achieve a target failure 

probability, mp . 

For the uncertainty levels given in Table 2, 

the resistance factors required to achieve a 

typical lifetime maximum acceptable failure 

probability of 1/ 5000mp   are shown in Figure 

3. Notice the presence of a ‘worst case’ 

correlation length which is approximately equal 

to the distance between the foundation and the 

sample, r. 

 
Figure 3. Resistance factors required to achieve 

1/ 5000mp  ( 3.5  ) for the bearing capacity 

design of a shallow foundation ( 0.3cv  , and 

conservative load bias factors). 

 

Figure 4 shows the low and high consequence 

factors, obtained using eq's (21). Although the 

consequence factor is supposed to be primarily 

dependent on the target maximum acceptable 

failure probability appropriate for the failure 

consequence, there is some residual dependence 

on site understanding (r) and correlation length (

 ). However, the dependence is slight, 

amounting to less than 4% relative change for 

high consequence (Figure 4b) and less than 12% 

for low consequence (Figure 4a). This 

dependence on r and  is negligible compared to 

the changes seen in the resistance factor, which 

is supposed to depend on r and , (see gu in 

Figure 3) of up to 300%. 

 
Figure 4. ULS consequence factors for shallow 

foundations required to adjust mp  1/5000 to 

low consequence mp  1/1000 in (a) and to high 

consequence mp  1/1000  in (b). 

 

Noting that consequence factors of lower value 

result in lower failure probability, it can be seen 

that if u is selected as 0.9 for  high failure 

consequence cases, then the target maximum 
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acceptable failure probability will be less than 

1/10,000mp  for all cases of r and 

considered in Figure 4b. 

Since it is not so important to remain 

conservative when the failure consequences are 

already low, Figure 4a suggests that 1.15u 

might be appropriate for low failure consequence 

designs. 

4. CONCLUSIONS 

The paper presents a unified theory which allows 

the estimation of both failure probability and the 

resistance and consequence factors required to 

achieve a target failure probability. Perhaps the 

most important component of this unified theory 

is eq. (19), which in a more generalized form 

appears as 

 2 2 2

ln ln ln 2
TW F R f s fs             (24) 

where R denotes ‘resistance’ and is replaced by 

the ground parameter(s) which are important for 

the problem. This equation can then be used in 

eq. (13), to determine failure probability, or in 

eq. (14) to determine required resistance factors 

given a target reliability. Eq. (24) includes the 

following components; 

1) variability of the applied load ln( )
TF , 

2) variability of the ground ln( )R , 

3) variance reduction due to averaging of the 

ground properties  under and around the 

foundation  ( )f , 

4) variance reduction due to averaging of the 

ground properties  found in the soil sample

( )s , and perhaps most importantly, 

5) correlation between the sample and the 

properties of the ground  under and around 

the foundation ( )fs . 

The last allows for a reasonable modeling of ‘site 

understanding’ so that resistance factors can be 

selected based on how well the response of the 

ground supporting the foundation can be 

predicted. The distance r used in this study can 

be used as a proxy to reflect general site and 

model understanding, where `model 

understanding' refers to how accurate the ground 

response prediction model is. As site and model 

understanding decreases, the corresponding 

value of r selected in this study would be 

increased. 

The consequence factor is used to adjust the 

target failure probability from the ‘typical’ level 

to either a high or low consequence level. 

Although not shown in this paper, a review of 

the consequence factors required for various 

limit states shows that the consequence factors 

are very similar, meaning that they are largely 

independent of the limit state under 

consideration. Thus, the distinction between s

and u can be dropped, and a common 

consequence factor,  , used.  
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