Publications
For publication and citation metrics from Web of Knowledge, go to
ResearchID and ORCID.
For publication and citation metrics from Google Scholar, go
to
Google Scholar Publication Metrics.
Synopsis:
1 edited book,
1 special issue of journal,
9 contributions to books,
64 papers in refereed research journals,
29 papers in refereed conference proceedings,
8 in nonrefereed proceedings,
3 papers submitted,
1 paper in preparation (not listed),
3 featured book reviews,
10 additional book reviews (not listed),
2 research monographs,
8 technical reports,
2 theses,
and 28 conference abstracts (not listed).
The Ph.D. Dissertations and Masters Theses of my students are under
item 10 below.
1 Edited Books

C. W. Curtis, A. Dzhamay, W. A. Hereman, and B. Prinari, Eds.,
Preface:
Nonlinear Wave Equations: Analytic and Computational
Techniques,
American Mathematical Society (AMS) Contemporary Mathematics
Series, vol. 635, AMS, Providence, RI (2015).
2 Special Issues of Journals

W. Hereman, Editor, Special Issue on
Continuous and Discrete
Integrable Systems with Applications,
Applicable Analysis, vol. 89 (4), pp. 429644 (2010).
3 Contributions in Books
Published

W. Hereman,
The Kortewegde Vries Equation.
In: The Princeton Companion to Applied Mathematics,
Eds.: N. J. Higham et al, Princeton University Press, Cambridge,
MA, Part III.16, p. 150 (2015).

Ü. Göktas and W. Hereman,
Symbolic Computation of Conservation Laws, Generalized
Symmetries, and Recursion Operators for Nonlinear
DifferentialDifference Equations.
In: Dynamical Systems and Methods,
Eds.: A. Luo, J.. Machado, and D. Baleanu, Springer
Verlag, New York, Chapter 7, pp. 153168 (2011).

W. Hereman, P.J. Adams, H.L. Eklund, M.S. Hickman,
and B.M. Herbst,
Direct Methods and Symbolic Software for Conservation Laws
of Nonlinear Equations.
In: Advances in Nonlinear Waves and Symbolic Computation,
Ed.: Z. Yan, Nova Science Publishers, New York, Chapter 2,
pp. 1979 (2009).

W. Hereman,
Shallow Water Waves and Solitary Waves.
In: Encyclopedia of Complexity and Systems Science,
Ed.: R.A. Meyers,
Springer Verlag, Heibelberg, Germany, Entry 480, pp. 81128125 (2009).
Reprinted in: Mathematics of Complexity and Dynamical Systems
 Selected entries from the Encyclopedia of Complexity and
Systems Science, Ed.: R.A. Meyers, Springer Verlag,
Heidelberg, Germany, pp. 15201532 (2013).
Updated version to appear in: Encyclopedia of Complexity
and Systems Science  version 2, Ed.: R.A. Meyers, Springer
Verlag, Heidelberg, Germany, 2018, online and print editions.

W. Hereman, M. Colagrosso, R. Sayers, A. Ringler, B. Deconinck,
M. Nivala, and M.S. Hickman,
Continuous and Discrete Homotopy Operators and the Computation of
Conservation Laws.
In: Differential Equations with Symbolic Computation,
Trends in Mathematics, Eds.: D. Wang and Z. Zheng,
Birkhäuser Verlag, Basel, Switzerland, Chapter 15, pp.
255290 (2005).

W. Hereman,
Painlevé Theory.
In: Computer Algebra Handbook: Foundations, Applications, Systems.
Eds.: J. Grabmeier, E. Kaltofen, and V. Weispfenning, Springer Verlag,
Berlin, Germany, Ch. 2 (Symbolic Methods for Differential
Equations), Section 2.11, Chapter 2, pp. 96109 (2002).

W. Hereman and Ü. Göktas,
Integrability Tests for Nonlinear Evolution Equations,
Computer Algebra Systems: A Practical Guide, Chapter 12, Ed.:
M. Wester, Wiley and Sons, New York, pp. 211232 (1999).

W. Hereman,
Lie Symmetry Analysis with Symbolic Software.
In: Encyclopedia of Mathematics,
Supplement Volume I, Ed.: M. Hazewinkel, Kluwer Academic
Publishers, Dordrecht, The Netherlands, pp. 351355 (1998).

W. Hereman,
Symbolic Software for Lie Symmetry Analysis.
In: CRC Handbook of Lie Group Analysis of Differential
Equations, Volume 3: New Trends in Theoretical Developments and
Computational Methods, Ed.: N.H. Ibragimov, CRC Press,
Boca Raton, Florida, Chapter 13, pp. 367413 (1996).
4 Featured Book Reviews
and Book Reviews
Published

W. Hereman,
Involution: The Formal Theory of Differential Equations
and Its Applications in Computer Algebra
by Werner Seiler, SpringerVerlag, Heidelberg, 2010,
SIAM Review, vol. 53 (3), pp. 589591 (2011).

W. Hereman,
Featured Review: The Mathematica GuideBook for Numerics and the
Mathematica GuideBook for Symbolics
by Michael Trott, SpringerVerlag, New York, 2006,
SIAM Review, vol. 49 (1), pp. 123129 (2007).

W. Hereman,
Featured Review: The Mathematica GuideBook for Programming and the
Mathematica GuideBook for Graphics
by Michael Trott, SpringerVerlag, New York, 2004,
SIAM Review, vol. 47 (4), pp. 801806 (2006).
5
In Refereed Journals
Submitted
 F. Verheest and W. A. Hereman,
Overtaking interaction of two weakly nonlinear acoustic
solitons in plasmas at critical densities (2018).
 S. C. Mancas and W. Hereman,
Traveling wave solutions to a seventhorder
KortewegdeVries equation: I. Sech solutions
(2017).
 T. Bridgman and W. Hereman,
Gaugeequivalent Lax pairs of Boussinesqtype systems of
partial difference equations
(2017).
Published
 C. P. Olivier, F. Verheest, and W. Hereman,
Collision properties of overtaking supersolitons with small
amplitudes, Physics of Plasmas, vol. 25(3),
art. no. 032309, 6 pages (2018).
 F. Verheest, C. P. Olivier, and W. Hereman,
Modified Kortewegde Vries solitons at supercritical
densities in twoelectron temperature plasmas,
Journal of Plasma Physics, vol. 82(2), art. no. 905820208,
13 pages (2016).
 T. Bridgman, W. Hereman, G. R. W. Quispel, and
P. H. van der Kamp,
Symbolic computation of Lax pairs of partial difference equations
using consistency around the cube,
Foundations of Computational Mathematics, vol. 13 (4), pp.
517544 (2013).

F. Verheest, M. A. Hellberg, and W. Hereman,
Headon Collisions of Electrostatic Solitons in MultiIon
Plasmas,
Physics of Plasmas, vol. 19 (9), art. no. 092302, 7 pages (2012).

F. Verheest, M. A. Hellberg, and W. Hereman,
Headon Collisions of Electrostatic Solitons in Nonthermal
Plasmas,
Physical Review E, vol. 86, art. no. 036402, 9 pages (2012).
 M. Hickman, W. Hereman, J. Larue, Ü. Göktas,
Scaling invariant Lax pairs of nonlinear evolution equations,
Applicable Analysis, vol. 91 (2), pp. 381402 (2012).
 D. Poole and W. Hereman,
Symbolic computation of conservation laws for
nonlinear partial differential equations in multiple
space dimensions,
Journal of Symbolic Computation, vol. 46 (12), pp. 13551377
(2011).
 Ü. Göktas and W. Hereman,
Symbolic computation of recursion operators for nonlinear
differentialdifference equations,
Mathematical and Computational Applications,
vol. 16 (1), pp. 112 (2011).
 D. Baldwin and W. Hereman,
A symbolic algorithm for computing recursion operators of
nonlinear partial differential equations,
International Journal of Computer Mathematics, vol. 87 (5),
pp. 10941119 (2010).
 W. Hereman,
Foreword to the Special Issue on Continuous and Discrete
Integrable Systems with Applications,
Applicable Analysis, vol. 89 (4), pp. 429431 (2010).
 D. Poole and W. Hereman,
The homotopy operator method for symbolic integration by parts
and inversion of divergences with applications,
Applicable Analysis, vol. 89 (4), pp. 433455 (2010).

M. Grundland, W. Hereman, and Ï. Yurdusen,
Conformally parametrized surfaces associated with
CPN sigma models,
Journal of Physics A: Mathematical and Theoretical, vol. 41,
art. no. 065204, 28 pages (2008).

W. Hereman, B. Deconinck, and L. D. Poole,
Continuous and discrete homotopy operators: A theoretical
approach made concrete, Mathematics and Computers
in Simulation, vol. 74 (45), pp. 352360 (2007).

D. Baldwin and W. Hereman,
Symbolic software for the Painlevé test of nonlinear
differential ordinary and partial equations,
Journal of Nonlinear Mathematical Physics, vol. 13 (1), pp. 90110
(2006).

W. Hereman,
Symbolic computation of conservation laws of nonlinear partial
differential equations in multidimensions,
International Journal of Quantum Chemistry, vol. 106 (1)
pp. 278299 (2006).

D. Baldwin, Ü. Göktas, and W. Hereman,
Symbolic computation of hyperbolic tangent solutions for nonlinear
differentialdifference equations,
Computer Physics Communications, vol. 162 (3), pp. 203217 (2004).

D. Baldwin, Ü. Göktas, W. Hereman, L. Hong,
R.S. Martino, and J.C. Miller,
Symbolic computation of exact solutions expressible in
hyperbolic and elliptic functions for nonlinear PDEs,
Journal of Symbolic Computation, vol. 37 (6), pp. 669705 (2004).

M. Hickman and W. Hereman,
Computation of densities and fluxes of nonlinear
differentialdifference equations,
Proceedings Royal Society of London A, vol. 459 (2039),
pp. 27052729 (2003).

J. DeSanto, G. Erdmann, W. Hereman, and M. Misra,
Application of wavelet transforms for solving integral equations
that arise in rough surface scattering,
IEEE Antennas and Propagation Magazine, vol. 43 (6), pp. 5562 (2001).

J. DeSanto, G. Erdmann, W. Hereman, B. Krause, M. Misra, and E. Swim,
Theoretical and computational aspects of scattering from
rough surfaces:
Twodimensional transmission surfaces using the spectralcoordinate
method,
Waves in Random Media, vol. 11 (4), pp. 489526 (2001).

J. DeSanto, G. Erdmann, W. Hereman, B. Krause, M. Misra,
and E. Swim,
Theoretical and computational aspects of scattering from
rough surfaces:
Twodimensional perfectly reflecting surfaces using the
spectralcoordinate method,
Waves in Random Media, vol. 11 (4), pp. 455487 (2001).
 J. DeSanto, G. Erdmann, W. Hereman, and M. Misra,
Theoretical and computational aspects of scattering from rough
surfaces: Onedimensional transmission interface,
Waves in Random Media, vol. 11 (4), pp. 425453 (2001).

F. Verheest, W. Hereman, and W. Malfliet,
Comments on "A new mathematical approach for finding the solitary
waves in dusty plasma",
Physics of Plasmas, vol. 6 (11), pp. 43924394 (1999).

Ü. Göktas and W. Hereman,
Algorithmic computation of higherorder symmetries for nonlinear
evolution and lattice equations,
Advances in Computational Mathematics, vol. 11 (1), pp.
5580 (1999).

L. Monzón, G. Beylkin, and W. Hereman,
Compactly supported wavelets based on almost interpolating and
nearly linear phase filters (Coiflets),
Applied and Computational Harmonic Analysis,
vol. 7 (2), pp. 184210 (1999).

W. Hereman,
Ü. Göktas, M. Colagrosso, and A. Miller,
Algorithmic integrability tests for nonlinear differential and
lattice equations,
Computer Physics Communications, vol. 115 (23), pp. 428446 (1998).

Ü. Göktas and W. Hereman,
Computation of conservation laws for nonlinear lattices,
Physica D, vol. 123 (14), pp. 425436 (1998).

J. DeSanto, G. Erdmann, W. Hereman, and M. Misra,
Theoretical and computational aspects of scattering from rough
surfaces: Onedimensional perfectly reflecting surfaces,
Waves in Random Media, vol. 8 (4), pp. 385414 (1998).

W. Navidi, W. Murphy, Jr., and W. Hereman,
Statistical methods in surveying by trilateration,
Computational Statistics and Data Analysis, vol. 27 (2), pp. 209227
(1998).

Ü. Göktas and W. Hereman,
Symbolic computation of conserved densities for systems of
nonlinear evolution equations,
Journal of Symbolic Computation, vol. 24 (5), pp. 591621 (1997).

Ü. Göktas, W. Hereman, and G. Erdmann,
Computation of conserved densities for systems of nonlinear
differentialdifference equations,
Physics Letters A, vol. 236 (12), pp. 3038 (1997).

W. Hereman,
Review of symbolic software for Lie symmetry analysis,
Mathematical and Computer Modelling, vol. 25 (89), pp. 115132 (1997).

W. Hereman and A. Nuseir,
Symbolic methods to construct exact solutions of nonlinear partial
differential equations,
Mathematics and Computers in Simulation, vol. 43 (1), pp. 1327 (1997).

W. Malfliet and W. Hereman,
The tanh method: II. Perturbation technique for conservative systems,
Physica Scripta, vol. 54 (6), pp. 569575 (1996).

W. Malfliet and W. Hereman,
The tanh method: I. Exact solutions of nonlinear evolution and
wave equations,
Physica Scripta, vol. 54 (6), pp. 563568 (1996).

W. Hereman,
Computer algebra: lightening the load,
Physics World, vol. 9 (3), pp. 4752, March 1996.

R. Willox, W. Hereman and F. Verheest,
Complete integrability of a modified vector derivative nonlinear
Schrödinger equation,
Physica Scripta, vol. 52, pp. 2126 (1995).

W. Hereman and W. Zhuang,
Symbolic software for soliton theory,
Acta Applicandae Mathematicae, vol. 39, pp. 361378 (1995).

W. Hereman,
Visual data analysis: maths made easy,
Physics World, vol. 8 (4), pp. 4953, April 1995.

F. Verheest and W. Hereman,
Conservation laws and solitary wave solutions for generalized
Schamel equations,
Physica Scripta, vol. 50, pp. 611614 (1994).

W. Hereman,
Review of symbolic software for the computation of Lie symmetries
of differential equations,
Euromath Bulletin, vol. 1 (2), pp. 4582 (1994).

W. Hereman, W.H. Steeb, and N. Euler,
Comment on: `Towards the conservation laws and Lie symmetries for
the KhokhlovZabolotskaya equation in three dimensions',
Journal of Physics A: Mathematical and General, vol. 25 (8),
pp. 24172418 (1992).

W.H. Steeb, N. Euler, and W. Hereman,
A note on the Zakharov equation and Lie symmetry vector fields,
Nuovo Cimento B (Note Brevi), vol. 107 (10), pp. 12111213 (1992).

R.A. Mertens, W. Hereman, and J.P. Ottoy,
Approximate and numerical methods in Acoustooptics : Part 2.
Oblique incidence of the light  Bragg Reflection,
Academiae Analecta,
vol. 53 (1), pp. 2759 (1991).

B. Champagne, W. Hereman, and P. Winternitz,
The computer calculation of Lie point symmetries of large systems
of differential equations,
Computer Physics Communications, vol. 66 (23), pp. 319340
(1991).

W. Hereman,
Exact solitary wave solutions of coupled nonlinear evolution
equations using Macsyma,
Computer Physics Communications, vol. 65 (13), pp. 143150
(1991).

W. Hereman and M. Takaoka,
Solitary wave solutions of nonlinear evolution and wave equations
using a direct method and MACSYMA,
Journal of Physics A: Mathematical and General, vol. 23 (21),
pp. 48054822 (1990).

R.A. Mertens, W. Hereman, and J.P. Ottoy,
The RamanNath equations revisited.
II. Oblique incidence of the light  Bragg reflection,
Selected Papers on Acoustooptics, Ed.: A. Korpel, SPIE
Milestone Series, SPIE Optical Engineering Press, Bellingham,
Washington, vol. MS 16, pp. 444448 (1990).

F. Verheest, W. Hereman, and H. Serras,
Possible chaotic pulsations in ZZ Ceti and rapidly oscillating Ap
stars due to nonlinear harmonic mode coupling, Monthly
Notices of the Royal Astronomical Society, vol. 245, pp. 392396
(1990).

P.P. Banerjee, F. Daoud and W. Hereman,
A straightforward method for finding implicit solitary wave
solutions of nonlinear evolution and wave equations,
Journal of Physics A: Mathematical and General, vol. 23 (4),
pp. 521536 (1990).

W. Hereman and S. Angenent,
The Painlevé test for nonlinear ordinary and partial
differential equations,
MACSYMA Newsletter, vol. 6 (1), pp. 1118 (1989).

W. Hereman, P.P. Banerjee, and M. Chatterjee,
Derivation and implicit solution of the Harry Dym equation and
its connections with the Kortewegde Vries equation,
Journal of Physics A: Mathematical and General, vol. 22 (3), pp.
241255 (1989).

R.A. Mertens, W. Hereman, and J.P. Ottoy,
Approximate and numerical methods in Acoustooptics: Part 1.
Normal incidence of the light,
Academiae Analecta,
vol. 50 (1), pp. 950 (1988).

R. Pieper, A. Korpel, and W. Hereman,
Extension of the Acoustooptic Bragg regime through Hamming
apodization of the sound field,
Journal of the Optical Society of America A: Optics and Image
Science, vol. 3 (10), pp. 16081619 (1986).

W. Hereman, P.P. Banerjee, A. Korpel, G. Assanto,
A. Van Immerzeele, and A. Meerpoel,
Exact solitary wave solutions of nonlinear evolution and
wave equations using a direct algebraic method,
Journal of Physics A: Mathematical and General, vol. 19 (5),
pp. 607628 (1986).

W. Hereman,
Contribution to the theoretical study of the diffraction
of ordinary and laser light by an ultrasonic wave in a
liquid,
Academiae Analecta,
vol. 48 (1), pp. 2352 (1986).

W. Hereman, A. Korpel, and P.P. Banerjee,
A general physical approach to solitary wave construction
from linear solutions,
Wave Motion, vol. 7 (3), pp. 283290 (1985).

W. Hereman, R.A. Mertens, F. Verheest, O. Leroy, J.M. Claeys, and
E. Blomme,
Interaction of light and ultrasound: Acoustooptics,
Physicalia Magazine, vol. 6 (4), pp. 213245 (1984).

R.A. Mertens, W. Hereman. and R. De Spiegeleere,
On the exact theory of tops rising by friction,
Zeitschrift für Angewandte Mathematik und Mechanik
(Journal of Applied Mathematics and Mechanics),
vol. 62 (4), pp. T58T60 (1982).

F. Verheest and W. Hereman,
Nonlinear mode decoupling for classes of evolution equations,
Journal of Physics A: Mathematical and General, vol. 15 (1),
pp. 95102 (1982).

W. Hereman, F. Verheest, and R.A. Mertens,
Acoustooptic diffraction of intense laser light in a liquid,
Acustica, vol. 48 (1), pp. 19 (1981).

W. Hereman,
Diffraction of light by an amplitudemodulated ultrasonic wave
at normal and oblique incidence of the light,
Simon Stevin, vol. 54 (34), pp. 193211 (1980).

F. Verheest and W. Hereman,
Nonresonant mode coupling for classes of Kortewegde Vries
equations,
Journal of the Physical Society of Japan, vol. 47 (6), pp. 20072012
(1979).

W. Hereman and R.A. Mertens,
On the diffraction of light by an amplitudemodulated
ultrasonic wave,
Wave Motion, vol. 1 (4), pp. 287298 (1979).
6
In Refereed Conference Proceedings

Ü. Göktas and W. Hereman,
Symbolic computation of conservation laws,
generalized symmetries, and recursion operators for nonlinear
differentialdifference equations,
Proceedings of the Third Conference on Nonlinear Science and
Complexity (NSC 2010), Ankara, Turkey, July 2831, 2010,
Eds.: D. Baleanu, Z.B. Guvenc, and O. Defterli,
Cankaya University Publications, Ankara, Turkey, Symposium 15,
Article ID 89, 6 pages.

Ü. Göktas; and W. Hereman,
Symbolic computation of recursion operators for nonlinear
differentialdifference equations,
Proceedings of the First International Symposium on
Computing in Science and Engineering (ISCSE 2010), Kusadasi,
Aydin, Turkey, June 35, 2010, Ed.: Ï. Gürler, Gediz
University Publications, Izmir, Turkey (2010), pp. 2733.

J. de la Porte, B.M. Herbst, W. Hereman and S.J. van der Walt,
An introduction to diffusion maps,
Proceedings of the 19th Symposium of the Pattern Recognition
Association of South Africa (PRASA 2008), Cape Town, South Africa,
November 2628, 2008, Ed.: F. Nicolls, University of Cape Town,
Cape Town, South Africa (2008), pp. 1525.

W. Hereman and W. Malfliet,
The tanh method: A tool to solve nonlinear partial differential
equations with symbolic software,
9th World Multiconference on Systemics, Cybernetics, and Informatics
(WMSCI 2005), Eds.: N. Callaos and W. Lesso, Orlando, Florida,
July 1013, 2005, vol. 3, pp. 165168.

W. Hereman, J.A. Sanders, J. Sayers, and J.P. Wang,
Symbolic computation of polynomial conserved densities,
generalized symmetries, and recursion operators for nonlinear
differentialdifference equations,
Group Theory and Numerical Analysis, CRM Proceedings and
Lecture Series 39,
Eds.: P. Winternitz, D. GomezUllate, A. Iserles, D. Levi,
P.J. Olver, R. Quispel, and P. Tempesta,
American Mathematical Society, Providence, Rhode Island (2005),
pp. 133148.

D. Baldwin, W. Hereman, and J. Sayers,
Symbolic algorithms for the Painlevé test, special
solutions, and recursion operators for nonlinear PDEs,
Group Theory and Numerical Analysis,
CRM Proceedings and Lecture Series 39,
Eds.: P. Winternitz, D. GomezUllate, A. Iserles, D. Levi,
P.J. Olver, R. Quispel, and P. Tempesta,
American Mathematical Society, Providence, Rhode Island (2005),
pp. 1732.

M. Hickman and W. Hereman,
Computation of densities and fluxes of nonlinear
differentialdifference equations,
Proceedings Sixth Asian Symposium on Computer Mathematics,
Beijing China, April 1719, 2003,
Eds. Z. Li and W. Sit,
World Scientific Publishing, Singapore (2003), pp. 163173.

Ü. Göktas and W. Hereman,
Invariants and symmetries for partial differential equations and
lattices,
Proceedings Fourth International Conference on Mathematical and
Numerical Aspects of Wave Propagation,
Ed.: J.A. DeSanto, Colorado School
of Mines, Golden, Colorado, June 15, 1998, SIAM, Philadelphia
(1998), pp. 403407.

W. Hereman and W. Zhuang,
Symbolic software for soliton theory,
Proceedings of Conference KdV '95, April 1995,
Amsterdam, The Netherlands, Eds.: M. Hazewinkel,
H.W. Capel, and E.M. de Jager, Kluwer Academic Publishers,
Dordrecht, The Netherlands (1995), pp. 361378.

W. Hereman, L. Marchildon, and M. Grundland,
Lie point symmetries of classical field theories,
Proceedings of the XIX International Colloquium, Salamanca,
Spain, June 29July 4, 1992,
Anales de Física. Monografías,
Group Theoretical Methods in Physics, vol. 1,
Eds.: M.A. del Olmo, M. Santander, and J. Mateos Guilarte,
Real Sociedad Española de Física, Madrid, Spain
(1993), pp. 402405.

W. Hereman,
SYMMGRP.MAX and other symbolic programs for Lie symmetry
analysis of partial differential equations,
Exploiting Symmetry in Applied and Numerical Analysis,
Lectures in Applied Mathematics 29, Proceedings of the AMSSIAM
Summer Seminar, Fort Collins, July 26August 1, 1992,
Eds.: E. Allgower, K. Georg, and R. Miranda,
American Mathematical Society, Providence, Rhode Island (1993),
pp. 241257.

W. Hereman and W. Zhuang,
Symbolic computation of solitons with Macsyma,
Computational and Applied Mathematics II: Differential Equations.
Eds.: W.F. Ames and P.J. van der Houwen, North Holland, Amsterdam
The Netherlands (1992), pp. 287296.

F. Verheest and W. Hereman,
Chaotic pulsations in variable stars with harmonic mode
coupling,
Research Reports in Physics, Nonlinear Dynamics,
Proceedings of the Conference on Aspects of Nonlinear Dynamics:
Solitons and Chaos,
Free University of Brussels, Brussels, Belgium, December 68,
1990, Eds.: I. Antoniou and F.J. Lambert, Springer Verlag, Berlin
Germany (1991), pp. 166170.

R.A. Mertens, W. Hereman, and J.P. Ottoy,
The Nth order approximation method in acoustooptics and the
condition for 'pure' Bragg reflection,
Proceedings of the Symposium on Physical Acoustics: Fundamental and
Applications, University of Leuven at Kortrijk, Kortrijk, Belgium,
June 1922, 1990, Eds.: O. Leroy and M.A. Breazeale, Plenum Press, New
York (1991), pp. 505509.

W. Hereman and W. Zhuang,
A MACSYMA program for the Hirota method,
Proceedings of the 13th IMACS World Congress on Computation and Applied
Mathematics, Dublin, July 2226, 1991,
Eds.: R. Vichnevetsky and J.J.H. Miller, Criterion Press, Dublin
Ireland (1991), vol. 2, pp. 842843.
Also available:
W. Hereman and W. Zhuang,
Symbolic computation of solitons via Hirota's bilinear method,
Technical Report, Department of Mathematical and Computer
Sciences, Colorado School of Mines, Golden, Colorado (1994),
33 pages.

W. Hereman,
Application of a Macsyma program for the Painlevé test to the
FitzhughNagumo equation,
Partially Integrable Evolution Equations in Physics,
Proceedings of the Summer School for Theoretical Physics,
Les Houches, France, March 2128, 1989,
Eds.: R. Conte and N. Boccara, Kluwer Academic Publishers,
Dordrecht, The Netherlands (1990), Contributed Papers, pp. 585586.

W. Hereman and E. Van den Bulck,
MACSYMA program for the Painlevé test of nonlinear ordinary
and partial differential equations,
Proceedings of the Workshop on Finite Dimensional Integrable
Nonlinear Dynamical Systems, Eds.: P.G.L. Leach and W.H. Steeb,
Johannesburg, South Africa, January 1115, 1988. World Scientific,
Singapore (1988), pp. 117129.

A. Defebvre, R.A. Mertens, J.P. Ottoy and W. Hereman,
Experimental testing of truncated RamanNath system solutions,
Proceedings Ultrasonics International '87, London, United Kingdom,
July 69, 1987, ButterworthHeinemann, Oxford, United Kingdom
(1987), pp. 7883.

R.A. Mertens, W. Hereman, and J.P. Ottoy,
The RamanNath equations revisited.
II. Oblique incidence of the light  Bragg reflection,
Proceedings Ultrasonics International '87, London, United Kingdom,
July 69, 1987, ButterworthHeinemann, Oxford, United Kingdom (1987),
pp. 8489.

R.A. Mertens, J.P. Ottoy, and W. Hereman,
Numerical integration of the truncated RamanNath system,
Congress Proceedings of the 12th International Congress on
Acoustics, Toronto, Canada, July 2431, 1986, vol. 2, p. G71.

R.A. Mertens, W. Hereman and J.P. Ottoy,
The RamanNath equations revisited,
Proceedings Ultrasonics International '85, London, United Kingdom,
July 25, 1985, Butterworths, Guildford, United Kingdom (1985),
pp. 422428.

R.A. Mertens and W. Hereman,
On the diffraction of light by adjacent parallel ultrasonic waves.
A general theory,
Proceedings Ultrasonics International '83, Halifax, Canada,
July 1214, 1983, Butterworths, Guildford, United Kingdom (1983)
pp. 282288.

W. Hereman,
Acoustooptic diffraction of intense laser light in an isotropic
medium (including third harmonic generation),
Proceedings of the Second Spring School on Acoustooptics and
Applications, Gdansk, Poland, May 2429, 1983, pp. 206223.

R.A. Mertens and W. Hereman,
Diffraction of light by ultrasonic waves in the case of oblique
incidence of the light. General theory and approximations,
Proceedings of the Second Spring School on Acoustooptics and
Applications, Gdansk, Poland, May 2429, 1983, pp. 931.

W. Hereman and R.A. Mertens,
On the diffraction of light by ultrasonic waves in the Bragg
case,
Revue d'Acoustique, 11th International Congress on Acoustics,
Paris, France, July 1927, 1983, vol. 2, pp. 287290.

W. Hereman, F. Verheest and R.A. Mertens,
On the Acoustooptics of an intense laser beam in a liquid,
Proceedings Ultrasonics International '81, Brighton, United
Kingdom, June 30July 2, 1981, Butterworths, Guildford, United
Kingdom (1981) pp. 104109.

R.A. Mertens, W. Hereman, and F. Verheest,
Some recent developments in the theory of diffraction of light
by ultrasonic waves,
Proceedings of the First Spring School on Acoustooptics and
Applications, Gdansk, Poland, May 2630, 1980, pp. 3351.

F. Verheest and W. Hereman,
Limitations of the description of nonlinear plasma phenomena
through wavewave interaction,
Proceedings International Conference on Plasma Physics, Nagoya,
Japan, April 711, 1980, l0PII01, vol. 1, p. 386.

R.A. Mertens and W. Hereman,
Über die RamanNathsche Theorie der Beugung des Lichtes an
Ultraschallwellen,
Fortschritte der Akustik DAGA '80, München, Germany, March
1013, 1980, VDEVerlag, Berlin, Germany (1980), pp. 563566.
7 In Unrefereed Conference
Proceedings

W. Hereman and A. Nuseir,
Symbolic methods to find exact solutions of nonlinear PDEs,
Proceedings of the 14th IMACS World Congress on Computational
and Applied Mathematics, Atlanta, Georgia, July 1115, 1994,
Ed.: W.F. Ames, IMACS, New Brunswick (1994), vol. 1, pp.
222225.

W. Hereman,
Symbolic software for the study of nonlinear partial differential
equations ,
Advances in Computer Methods for Partial Differential
Equations VII, Proceedings of the 7th IMACS International
Conference on Computer Methods for Partial Differential Equations,
Rutgers University, New Brunswick, New Jersey, June 2224, 1992,
Eds.: R. Vichnevetsky, D. Knight, and G. Richter, IMACS, New
Brunswick, New Jersey (1993), pp. 326332.

W. Hereman,
Solitary wave solutions of coupled nonlinear evolution equations
using Macsyma,
Proceedings of IMACS 1st International Conference on Computational
Physics, Eds.: K. Gustafson and W. Wyss, University of Colorado,
Boulder, Colorado, June 1115, 1990, pp. 150153.

R.A. Mertens, W. Hereman, F. Verheest, and J.P. Ottoy,
Theoretical acoustooptics: exact, approximate and numerical methods,
"Book of Abstracts", Proceedings of Workshop V on (nonlinear)
stability, University of Antwerp, Antwerp, Belgium, September
1123, 1990, Ed.: D.K. Callebaut, UIA Press, Antwerp, Belgium
(1990), pp. 4550.

W. Hereman,
The construction of implicit and explicit solitary wave
solutions of nonlinear partial differential equations,
Proceedings of the Conference on Applied Mathematics in Honor of
Professor A.A. Ashour, 36 January, 1987, Cairo, Egypt (1988), pp.
291312.

W. Hereman, P.P. Banerjee, and D. Faker,
The construction of solitary wave solutions of the Kortewegde
Vries equation via Painlevé analysis,
Proceedings of Workshop WASDA III: Wave and Soliton Days Antwerp,
University of Antwerp, June 23, 1988, Eds.: D.K. Callebaut and
W. Malfliet, UIA Press, Antwerp, Belgium (1988), vol. II, pp. 166191.

P.P. Banerjee, W. Choe, G. Cao, and W. Hereman,
Stationary eigenmodes and their stability during wave propagation
in a medium with quadratic and cubic nonlinearities without
dispersion,
Proceedings of Workshop WASDA III: Wave and Soliton Days Antwerp,
Antwerp, Belgium, June 23, 1988,
Eds.: D.K. Callebaut and W. Malfliet, UIA Press, Antwerp, Belgium
(1988), vol. II, pp. 143165.

F. Verheest and W. Hereman,
Wave decoupling for the SharmaTassoOlver and higherorder
Kortewegde Vries equations,
Proceedings of Workshop II on (nonlinear) Stability in
Magnetohydrodynamics, University of Antwerp, Antwerp, Belgium,
September 130, 1980, Ed.: D.K. Callebaut, UIA Press,
Antwerp, Belgium (1980), pp. 125137.
8 Technical Reports

J. DeSanto, G. Erdmann, W. Hereman, B. Krause, M. Misra, and E. Swim,
Theoretical and computational aspects of scattering from
rough surfaces: Twodimensional surfaces,
Technical Report # 4 MURI Project,
Department of Mathematical and Computer Sciences, Colorado School
of Mines, Golden, Colorado (1980), 183 pages.

J. DeSanto, G. Erdmann, W. Hereman, and M. Misra,
Theoretical and computational aspects of scattering from
rough surfaces: Onedimensional transmission interface,
Technical Report # 3 MURI Project,
Department of Mathematical and Computer Sciences,
Colorado School of Mines, Golden, Colorado (2000), 121 pages.

J. DeSanto, G. Erdmann, W. Hereman, and M. Misra,
Theoretical and computational aspects of scattering from rough
surfaces: Onedimensional perfectly reflecting surfaces,
Technical Report MCS9709 MURI Project,
Department of Mathematical and Computer Sciences,
Colorado School of Mines, Golden, Colorado (1997), 62 pages.

J. Boleng, C. Craig, J. DeSanto, G. Erdmann, W. Hereman, M. Khebchareon,
M. Misra, and A. Sinex,
Computational modeling of rough surface scattering,
Technical Report MCS9609 MURI Project,
Department of Mathematical and Computer Sciences,
Colorado School of Mines, Golden, Colorado (1996), 40 pages.

W. Murphy and W. Hereman,
Determination of a position in three dimensions using
trilateration and approximate distances,
Technical Report MCS9507,
Department of Mathematical and Computer Sciences,
Colorado School of Mines, Golden, Colorado (1995), 19 pages.

W. Hereman and W. Murphy,
Manual for Trilateration Program: Determination of a position in
three dimensions using trilateration and approximate distances,
Department of Mathematical and Computer Sciences,
Colorado School of Mines, Golden, Colorado (1991), 22 pages.

W. Hereman and W. Zhuang,
Symbolic computation of solitons via Hirota's bilinear method,
Technical Report, Department of Mathematical and Computer
Sciences, Colorado School of Mines, Golden, Colorado (1994),
33 pages.

W. Hereman, Y. Nagel and J. Strikwerda,
Macsyma at CMS version 309.3: An introduction to symbolic
mathematical computation,
CMS Technical Summary Report # 883, Department of Mathematics
& Center for the Mathematical Sciences, The University of
Wisconsin, Madison, Wisconsin (1987),
21 pages.
9 Theses

W. Hereman,
Theoretische Aspecten van AkoestoOptische Diffractie
(Theoretical Aspects of Acoustooptical Diffraction),
Ph.D. Dissertation, University of Ghent, Ghent, Belgium, June
1982, 247 pages, 5 figures, in Dutch.

W. Hereman,
Asymtotische Storingsmethodes in de Studie van Nietlineaire
Resonanties
(The KrylovBugoliubovMitropolski Method and the TwoTimescales
Averaging Method for the Study of Nonlinear Dynamical Resonances),
Master of Science Thesis, University of Ghent, Ghent, Belgium
(1976), 215 pages, in Dutch.
10
Research Monographs

W. Hereman,
Theoretische Aspecten van AkoestoOptische Diffractie (Theoretical
Aspects of Acoustooptical Diffraction),
Research Monograph, prepared for the Royal Academy of Sciences, Literature
and Fine Arts of Belgium; University of Ghent, Ghent, Belgium (1985),
260 pages, 5 figures, in Dutch.

W. Hereman,
Een Bijdrage tot de Theoretische Studie van de Diffractie van Gewoon en
Laserlicht door een Ultrageluidsgolf in een Vloeistof,
Thesis written for a Contest of the Royal Academy of Sciences,
Literature and Fine Arts of Belgium; University of Ghent, Ghent, Belgium
(1984), 143 pages, in Dutch.
11
Ph.D. Dissertations and Masters Theses of Hereman's Students

T.J. Bridgman,
Symbolic Computation of Lax Pairs of Nonlinear Partial
Difference Equations
,
Ph.D. Thesis,
Department of Applied Mathematics and Statistics,
Colorado School of Mines, Golden, Colorado, August 2018
(defended: April 2018).

J. Rezac,
Computation of Scaling Invariant Lax Pairs with Applications
to Conservation Laws
,
Masters Thesis,
Department of Applied Mathematics and Statistics,
Colorado School of Mines, Golden, Colorado, May 2012
(defended: March 2012).

J. Larue,
Symbolic Verification of Operator and Matrix Lax Pairs for Some
Completely Integrable Nonlinear Partial Differential Equations
,
Masters Thesis,
Department of Mathematical and Computer Sciences,
Colorado School of Mines, Golden, Colorado, June 2011
(defended: March 2011).

L.D. Poole,
Symbolic Computation of Conservation Laws of Nonlinear
Partial Differential Equations using Homotopy Operators
,
Ph.D. Thesis,
Department of Mathematical and Computer Sciences,
Colorado School of Mines, Golden, Colorado, December 2009
(defended: April 2009).

P. Adams,
Symbolic Computation of Conserved Densities and Fluxes
for Nonlinear Systems of Partial Differential
Equations with Transcendental Nonlinearities
,
M.S. Thesis,
Department of Mathematical and Computer Sciences,
Colorado School of Mines, Golden, Colorado, May 2003.

D. Baldwin,
Symbolic Algorithms and Software for the Painlevé
Test and Recursion Operators for Nonlinear Partial
Differential Equations
,
M.S. Thesis,
Department of Mathematical and Computer Sciences,
Colorado School of Mines, Golden, Colorado, May 2004.

H. Eklund
Symbolic Computation of Conserved Densities and Fluxes
for Nonlinear Systems of Differentialdifference
Equations
,
M.S. Thesis,
Department of Mathematical and Computer Sciences,
Colorado School of Mines, Golden, Colorado, May 2003.

Ü. Göktas,
Algorithmic Computation of Symmetries, Invariants and
Recursion Operators for Systems of Nonlinear Evolution
and Differentialdifference Equations
,
Ph.D. Thesis,
Department of Mathematical and Computer Sciences,
Colorado School of Mines, Golden, Colorado, May 1998.

Ü. Göktas,
Symbolic Computation of Conserved Densities for Systems
of Evolution Equations
,
M.S. Thesis,
Department of Mathematical and Computer Sciences,
Colorado School of Mines, Golden, Colorado, May 1996.

W. Murphy,
Determination of a Position Using Approximate Distances
and Trilateration
,
M.S. Thesis,
Department of Mathematical and Computer Sciences,
Colorado School of Mines, Golden, Colorado, May 1992.

A. Nuseir,
Symbolic Computation of Exact Solutions of Nonlinear
Partial Differential Equations using Direct Methods
,
Ph.D. Thesis,
Department of Mathematical and Computer Sciences,
Colorado School of Mines, Golden, Colorado, May 1995.

W. Zhuang,
Symbolic Computation of Exact Solutions of
Nonlinear Evolution and Waves Equations
,
M.S. Thesis,
Department of Mathematical and Computer Sciences,
Colorado School of Mines, Golden, Colorado, December 1991.
This material is based upon work supported by the National Science
Foundation (NSF) under Grants Nos. CCF0830783, CCR9300978, CCR9625421,
CCR9901929, DMS9732069, DMS9912293, and CCF0830783; and by the Air
Force Office of Scientific Research under Grant F496209610039.
Any opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views
of NSF or AFOSR.
Willy Hereman
Last updated: Sunday, June 10, 2018, at 1:30pm