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INTRODUCTION

The prediction that a sound field in a fluid or solid behaves as a volumetric
optical phase grating came from Brillouin already in 1922. That grating behaviour
manifests itself by redistributing the energy of the incoming light beam into scattered
beams that correspond to the grating spectral orders. Besides the spatial distribution,
the frequency of the scattered light is up- or down shifted by a multiple of the sound
frequency (Doppler shift).

The diffraction of light by sound is simple to explain qualitatively. Exciting an
acoustic compression wave in an acoustic-wave-supporting material creates a periodic
strain pattern with spacing equal to the acoustic wave length. The variation of the
index of refraction, caused by its internal strain (elastooptic effect), is proportional
to the magnitude of the sound wave and of course also dependent on the elastooptic
characteristics of the particular medium. Compared to the case without sound, the
phase velocity of the light is larger in layers of decreased sound pressure and smaller
in zones of increased density. Hence, the various light rays emerge with different
phase angles, thus producing spectral orders which contain both amplitude and phase
information about the acoustic wave.

One had to wait till 1932 for an experimental verification of the acousto-optic
(in short AO) diffraction effect by Debye and Sears in the USA and by Lucas and
Biquard in France.

During the past fifty years a large number of papers has been devoted to
theoretical as well as to experimental aspects of this interesting phenomenon. The
history of the theoretical analysis of light-sound interaction, however, has been
described so often that we will not repeat it here ; instead, we refer the interested
reader to the excellent reviews listed in earlier work [9, 12, 24].

Since the mid-sixties, there is a revived interest in the study of the AO
diffraction, mainly for 3 reasons :

(i) The development of coherent light sources (lasers), the advances in high-
frequency acoustic techniques and the discovery of several superior AO materials
have lead to new devices based on the old Debye-Sears or Lucas-Biquard effect.
Such AO devices often make use of transparant solids, and include modulators,
deflectors, signal correlators, tunable filters, spectrum analyzers, switchers, etc...
They are used in a variety of new commercial and military applications involving
RF signal processing, optical communication, ultrasonic imaging and nondes-
tructive testing, to name only a few.

(ii) From a theoretical point of view, the mathematical approaches successfully
exploited in the treatment of AO diffraction, are equally applicable to many
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other similar processes, such as diffraction of X-rays by crystals, scattering of
light by hologram gratings, optical wave guiding in thin films and fibers
(integrated optics) and various parametric effects in microwave technology. Last
but not least, the development of holography has strongly stimulated the search
of 3D diffraction gratings either holographically or acoustically induced.

(iii) Since its breakthrough at the end of the sixties, the study of AO interaction with
surface acoustic waves (SAW) has advanced to the level where a number of SAW
devices can be built for signal processing applications and optical communica-
tion technology. Profound analyses reveal a high degree of isomorphism
between the theories of diffraction of light by bulk ultrasonic waves and SAW.
The extensive theoretical and experimental research of light-sound interaction
in piezo-electric crystals, ferroelectric materials and anisotropic solids, has
become a new discipline, nowadays commonly called acousto-optics.

In this paper two main sections may be distinguished. In the first one, we focus
on the phenomenon of AQ diffraction of intense laser light in a liquid. This problem
is essentially nonlinear since for strong laser light the intensity of the applied electric
field is so high that the nonlinear terms in the polarization are no longer negligible.
The presence of cubic electric-field terms in the wave equation gives rise to third
harmonic generation (THG). Besides the AO diffraction of the fundamental light
wave, there will be a similar effect on its third harmonic. Phenomenologically, this
results in the appearance of supplementary lines in the diffraction pattern. Our
theoretical treatment of this complicated problem is based on a consistent combina-
tion of Bloembergen’s theory of THG [1, 3, 27] and the generalized Raman-Nath
(henceforth RN) theory of AO diffraction (for refs. see e.g. [7, 9, 24]).

In the second part, we will examine the AO diffraction of ordinary light or laser
light of low intensity in an isotropic medium. This problem may be considered as a
special case of the one mentioned above, since it requires the integration of a scalar
wave equation with only linear terms referring to the diffracted electric field. Of
particular interest is our alternative reformulation of the generalized RN theory, that
lends itself to a straightforward derivation of well-known results for Raman-Nath and
Bragg diffraction regimes. Our approach, known as the modified generating function
method (MGFM), indeed, is applicable to a large class of AQO interactions. To avoid
unnecessary complication, however, we will not fully discuss the results obtainable
from the most general analysis with the MGFM. Instead, we deal with the solutions
for some idealized cases, giving interpretable and practical-manageable formulae.
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NOMENCLATURE

wave length, wave number, speed of light (in vacuum)
permittivity, magnetic permeability of vacuum

wave length, wave number, frequency, angular frequency, speed of
light (in medium)

wave length, wave number, frequency, angular frequency, speed of
sound (in medium)

refractive index, linear relative permittivity (undisturbed medium)
maximum variation of the linear relative permittivity (disturbed
medium)

cubic relative susceptibility of the nonlinear medium

amplitude of the (incident) electric field (disturbed medium)
amplitude of the (scattered) electric field (disturbed medium)
acousto-optic interaction length along the z-axis

direction of sound propagation

direction of light propagation (at normal incidence)

time

angle of incidence of light (in medium)

order of diffraction

Bragg angle of order n (in medium)

deflection angle of order n (in medium)

complex amplitude of diffracted light wave of order n

real amplitude of diffracted light wave of order n

intensity of spectral line of order n

Besselfunction of the first kind and order n

Raman-Nath parameter or peak phase deviation

regime parameter

Klein-Cook parameter

vector symbol

complex conjugate

acousto-optic

Raman-Nath

modified generating function method

third harmonic generation
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I. Acousto-optic diffraction of intense laser light in an isotropic medium
(nonlinear case)

1. Basic principles

We consider the configuration as shown in fig. 1 and neglect any sound field
diffraction due to the bounded column. Let the bulk acoustic wave, with wave length
A, wave number K = 271 /A and frequency f, be travelling along the x-direction in the
isotropic medium (e.g. a liquid). The monochromatic light beam of wave length A,
wave number k = 271 /A (both in the medium) and frequency v is propagating in the
(x, z)-plane at an angle ¢ with respect to the z-axis. The angle ¢, also measured in
the liquid, is called the angle of incidence.
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Fig. 1. Geometry of AO diffraction.

As long as one uses sound waves in a lower range of ultrasonic frequencies (e.g.
f= 10 MHz), the angle ¢ is kept small. For sufficiently small width L of the sound
column, the diffracted light appears on both sides of the primary beam in the form
of equally spaced lines. This case of multiple-order scattering is commonly called
Raman-Nath diffraction, shown in fig. 2a. In the range of sound frequencies above e.g.
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400 MHz, the angle ¢ is mostly adjusted to the so-called Bragg angle @z (1° — 10°),
which we will define later. After passing through a sound field of sufficiently large
width L, light incident at the Bragg angle is — so to speak — partially reflected on
the moving sound wave fronts [24], and thus strongly diffracted in a single spot. This
case, which is extremely important in applications, is called single-order diffraction
or Bragg diffraction, schematically shown in fig. 2b.
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Fig. 2a. Multi-order Raman-Nath diffraction.
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Fig. 2b. Single-order Bragg diffraction.

Since we have to describe the propagation of an e.m. wave through a dielectric,
nonconductive medium, let us start from Maxwell’s equations without source terms,

vxﬁ+%_§=6, V. B-o0,

R (1)
vxH-22.G v.B-o.
ot
Eliminating the magnetic field H and the magnetic induction B (= MOH), we
readily obtain

VZE = Uy

f’atD +VV.E V.D-0. )

The magnetic permeability p, is linked to the permittivity €, and the speed of
light ¢ (all in vacuum) by g,u,c* = 1. In order that the first equation in (2) be a true
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wave equation, a relation between the electric displacement D and the electric field
E must be given. In general dielectric materials

D=¢E +PB(E)=¢kE + P, (E) + By (E), (3)

where the polarization P is split into its linear and nonlinear parts [4, 5].
The linear polarization vector may be written [5] as

B (E)=x".E, (4)

wherein X" represents the ordinary linear susceptibility tensor of rank 2 (and

order 1).
The nonlinear polarization may be expanded [4, 5] in a series of powers of the
electric field

Pu BE)=xP:EE+x:EEE+.., (5)

where : and : are the inner products symbols.
The coefficients %\, x5 stand for the quadratic and cubic susceptibility tensors,
respectively of rank 3 and 4 (orders 2 and 3).
In general dielectric materials the components of the susceptibility tensors act as
frequency-dependent operators upon the components of the electric field. Following
Bloembergen’s easiest model [1, 3], we only consider frequency-independent quan-
tities, no longer taking into account their operator character. Furthermore, the optical
susceptibilities being very small, we cut off the power series (5) after the second term.
Needless to say that the symmetry properties of the AO material will reflect
themselves in symmetry relations between the tensor components. So, in order that
the tensor x.2 will not vanish, the material must lack a center of inversion. Lastly,
the tensor components will be time and space dependent if the medium is inhomoge-
neous or becomes so due to e.g. an ultrasonic disturbance. Although, in our case, the
ultrasonic wave will propagate in one particular direction, this will not harm the
optical isotropy of the medium.
Now, knowing all this, one easily can show [7, 8, 9] that for an isotropy medium

W _ g
XLi = XLaij’

eruzjijk =0, (6)
XIS,E)UM = ABUBH + B5ik6j, + Cﬁilﬁjk, i,k 1=1,2,3),

where %, A, B and C are scalar functions of space and time. Remark that
from the 81 tensor components Xy only 21 are not identically zero. Among
these 21 non-vanishing components only 3 are independent, e.g. xﬁ{?lm =A;
erli?lzlz =B and XIEII?1221 =

Taking into account (6), the i-th component of the total polarization, up to
terms in E’, becomes
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P;=P.;+ Py,
= %.0;E; + (A9;0, + Bd,d; + Cdd;) EE,E,
=X E; + AE.EE, + BEEE, + CEEE,
=[5 +(A+B+C)E’lE, (i=1,2, 3), (7

where the convention of summing for repeated indices is adopted. Hence, the
constituent relation for the optical isotropic medium reads

B=¢g,(x, +xuE)E, (8)
introducing the relative susceptibilities x; = ¥X./€ and Xao = Xno/€o
=(A+B+Q)/g,

Finally, since ¥y << . the influence of the ultrasonic field on ¥y is a too small
effect to take into account. Thus, X, is treated as a scalar constant from now on, but
due to the presence of a simple progressive ultrasonic wave, we have

X (X, t) = x, + €, sin (Qt - Kx). 9)

X, is the constant value of x; for the undisturbed medium, €, is the maximum variation
of x.. Regarding (3), (8) and (9), D can be written as

D=¢g,[1+%,+e¢, sin (Qt - Kx) + X E2] E (10)
or briefly D = € (x, t) E, with
g (X, t) =g, [, + g sin (Qt - Kx) + . E’], (11)

where €; = 1 + X,, denotes the constant linear permittivity of the medium without
disturbing sound wave.

Expression (11), taken as a starting point by many authors (cf. refs. in [13]),
indicates that €, indeed is the maximum variation of the linear part of the relative
permittivity of the disturbed fluid.

Advoiding unnecessary complications, the sound field is supposed to pervade
the whole of the liquid. The theoretical analysis of the problem where the ultrasonic
field is preceded and followed by an undisturbed part of the fluid may be found
elsewhere [9, 14].

2. Basic equations for AO interaction and THG

We now consider a strong laser light beam impinging orthogonally on the
ultrasonic field. In that case ¢ = 0 and we speak of normal incidence of the light.
Furthermore, we suppose the plane monochromatic light wave to be linearly polari-
zed along the y-axis perpendicular to the (x, z)-plane. Then the incident electric field
has the form

E0={%A06Xpi¢(2, ty+ec )T, (12)
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where A, is the constant complex amplitude, and where the phase
?(z, t) = wt - kz, (13)

corresponding to light propagation in the z-direction, contains the angular frequency
w and the wave number k (in the medium) ; c.c. stands for complex conjugate.

Expressing that (12) is a solution of (2), without ultrasonic disturbance (g, = 0)
and without nonlinear terms () = 0 in (10) ), gives the linear dispersion law

K K

- (14)
1 + XO ErL

2
= == ,
ko = 27 /2y is the wave number of the light with wave length A, in vacuum.
Whereas in an optical isotropic medium a change in the state of light polariza-
tion is excluded, the perturbed optical field can be represented by E=E(x z1t) €
From V.D=0 (in (2)), indeed follows that E must be independent of the
y-coordinate.
Assuming that Eis linearly polarized, the vector wave equation in (2), simplifies
to the scalar wave equation

0’E 0’E 1 0
T2

T T F o {lex+¢ sin (Qt- Kx) | E+xE’}, (15)

after substitution of (10) and use of (14). The cubic term in (15) is responsible for
the generation of the third harmonic (THG) in the optical field, that thus can be
represented by

E(x,z,t)= % D, (x,z,t)expi®(z,t)+ %d%(x, z,t) exp 3id (z, t) +cc..
(16)

wherein @, and ®, are the complex amplitudes of the fundamental light wave and its
third hamonic respectively ; for both perfect phase matching is assumed.

The analysis of the AO interaction relies on the basic assumption that the
stratification of the medium as produced by the sound wave is stationary in space. This
is a fair assumption since the velocity of sound is roughly 10’ times smaller than the
speed of light. Hence, one makes the slowly varying envelope approximation,
dropping second order spatial derivatives with respect to z and all the time derivatives
of the slowly varying amplitudes @, and ®,.

With these simplifying assumptions, substitution of (16) into (15) results in two
coupled equations

Fb, A,
ox* - 2ik 0z

+ kZe, [sin (Qt - Kx) ] ®,

KX (D1D] + 20,0, + (DIZ(I’s)»

B w
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R, .. 0D .
6x23 - 6ik —azi+ 9kge, [sin (Qt - Kx) | @,
9 . N
=T koxa (P} + 60D 1D, + 3D3D)), (17)

wherein * stands for the complex conjugate. Remark that we have neglected terms
referring to the generation of harmonics higher than the third, this to be consistent
with the basic principles in Section 1.

Before transforming these mode-coupling equations, we consider the boundary
conditions at z = 0. Supposing that there is no THG before the light enters the
disturbed liquid column, the boundary conditions simply are

D, (x,0,t) = A, ®,(x, 0,1 =0. (18)

We restrict ourselves to solutions of the system (17) which incorporate in an intrinsic
way the periodicity properties of the ultrasonic waves [ 7]. Therefore we introduce the
coordinate transformation (x, z, t) — (&, {) defined by

1 3
E= j(Kx-QH T)’ (19)

_ kegz
v (20)

Denoting @, and &, in the new variables by ¥, and ¥,, (17) transforms into
o, ip o,
o 8 o
oY i 2
o ™ 31 (cos20) Wy = - Ip 0%,

24 o8
where the regime parameter

2K? Y
P= Ke, A% (22)

- i (cos2E) ¥, = - - iy (P + 29 W + W),
20

- iy (¥ + 69, W, + 3W29)),

and the nonlinearity parameter

3xXaL
_ , (23)
Y 4¢,
have been introduced. The periodicity conditions, obtained from the mentioned
physical argument, can now easily be summarized as

VE+mO=¥% (&0 ¥E+m =Y (ED. (24)

The functions ¥, (&, {) and ¥, (€, {) are called generating functions, a name
which will be justified in Section 4 of this first part.

Concluding this Section, we want to stress that the derivation of the coupled
partial differential equations (21) was essentially based on the idea that there are two
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small effects in this AO diffraction problem, one being the weak acoustic scattering
of the fundamental, the other the nonlinear generation of the third harmonic. A more
rigorous analysis [7 App. B, 13] has shown that requiring these two effects to be of
the same order of magnitude, (21) is still correct provided p = 0. This corresponds
to the well-known Raman-Nath limit, which we will continue with in the next Section.

3. Exact solution in the Raman-Nath limit

Without entering into the details, we now show how the nonlinear coupled
equations (21), with appropriate boundary and periodicity conditions, can be exactly
solved for p = 0. Experimentally this situation can be achieved by using a strong
ultrasonic wave (g, reasonably large) of rather long wave lenth A. For nonzero values
of p the integration of system (21) is still under investigation.

With the second order derivative terms dropped, the structure of the equations
(21) is such that the E-dependent coefficients can be split off by the substitution

¥, (E,0) =Z, (0 exp (il cos28),
(25)

W, (& Q) =Z,(0) exp (3iC cos2E).
This yields

dd—ZC' +iy (232, +272,2,2,+ ZZ,) = 0,
(26)
%ZC_J viy (Z3 + 6Z,Z,Z, + 322Z) = 0.
together with the boundary conditions

Z,(0)=Ay Z;(0)=0. 27

For solving the equations (26) we will use Bloembergen’s method [1, 3, 271,
originally developed for the theoretical study of wave mixing and harmonic generation
in dynamic nonlinear optics. Here, we only indicate the main steps of the technique,
for more details the reader is referred to the pioneering paper of Armstrong et al. [1],
which was corrected and reprinted in Bloembergen’s book [3, pp. 170-192].

The basic idea is to split the coupled equations (26) into their real and imaginary
parts by substituting

Z,=p, (s)exp (i, (s) ), Z;=p;(s)exp (ia; (s) ), (28)
where s = y(. Thus, we obtain
d .
90 __ i, s,
dp; _ 5
P p; siny, (29)
dy

- g_; (pf - 3p3) cosy + 3 (p} - pd),



36 W. HEREMAN

with y = 3a, - a,. Subject to the boundary conditions p, (0) =|A,|= py, 3 (0) =0,
o,(0)=0and a; (0)=- 7/ 2 ; from (29) two first integrals may readily be found
[9]:
pT+ 3= P
(30)
3
Py COSY + 5 p; = 0.

These invariants allow complete integration of the equations (29) by quadratures
only. Indeed, introducing u = p?, the system (29) can be reduced to only one ordinary
differential equation

QN -+ M, (31)

where f(u) = u’? (p{ - u) (13u - 9p}) is only strictly possitive between the two single
roots u=9pj / 13 and u = p{. Hence, u will oscillate between these two values and
consequently there will be a periodic (but partial) interchange of energy from the
fundamental to the third harmonic wave and vice versa [33].

Remarkably, the integration of (31) does not involve any elliptic integral [6, p. 84],
one simply obtains

2p¢ (1 - cos3pis)
11 - 2cos3pjs

9pq

11 - 2cos3pgs 32)

u=p?(s)= EHOR

Using these results together with the invariants (30), allows us to determine the real
phases o, and a; [9]. Since they do not effect the intensities, though they may be used
to obtain further refinements in the determination of the deflection angles of the
scattered light waves, we can safely ignore them here (if necessary see [7, 9] ).

4. Diffraction spectrum

Even without knowing the explicit expressions of ¥, and ¥, for p <+ 0, one can
draw far-reaching conclusions from their periodicity properties. Indeed, the condi-
tions (24) allow the expansion of these functions into Fourier series

Y (E0=- 3 0P (D exp (2inE) exp liod” (O 1, )

Y ED=- Y o (i exp (2imE) exp [0l (O) 1,

m= -

with real amplitudes ¢S", @4 and real phases o” and o\”. Returning to the old

variables via (19) and (20), and substituting these expansions into (16), results in



ACOUSTO-OPTIC DIFFRACTION 37

E(x,zt)= +§, % o’ () expli(w-nQ)tlexp[ -i(kz-nKx-al’(z))]

n=-o

+ +Z°]° % o8 (z) exp [i Bw-mQ) tlexp[ -1 (Gkz - mKx - P (z)) ] +c.c..

T (34)

It becomes obvious that the incident light wave will be split into different plane
subwaves, in other words the disturbed medium acts as an optical phase grating. To
each integer n there corresponds a diffraction order which has a maximum intensity
along the direction 6, (with the z-axis) given by the familiar grating equation

nK nA nAf
XAV 36)
wherein the phase angle correction o is neglected and where V = Af denotes the
sound velocity in the medium. It is also evident from the first series in (34) that the

n-th order light beam is frequency (up or down) shifted by an amount
Av, = - nf. (36)

In the second series of (34) the term corresponding the m = 3n also gives a
contribution to the n-th order diffraction line. Hence, the intensity of this spectral line
will be

L (D) = [of (O + [o% (DI (37)

Such lines (of order n, n integer) are called ordinary diffraction lines, since they are
found at the same places as if the medium were linear (xn. = 0, ¥ = 0). As we will
see in Part II this leads to diffraction lines still with the characteristics (35) and (36)
but with other intensities.

Regarding the second series in (34), for m & 3n (n € Z), there is an additional set
of diffracted subwaves, approximately at angles

6[1:_

m K m A m Af (38)

with Doppler shifts
AVm/3= '% f, (39)

and intensities
Ls (D =[o QP meZ m/3¢Z (40)

These socalled intermediate diffraction lines (of order m/ 3, m/3 not integer) only
appear for sufficiently strong laser light, when the nonlinearity manifests itself. In
other words, these intermediate lines, which have been observed in experiments of
Sliwinski and his collaborators [18, 19], are exclusively due to THG in the medium.
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In passing, note that according to the simple formulae (35) or (38), by keeping the
incident light beam fixed, but varying the sound frequency f, the diffracted light beams
may be deflected continuously.

From the above analysis it must be clear why ¥, and W, are called generating
functions. If one succeeds to find their explicit forms, one simply has to expand these
into Fourier series of type (33). Next, one can read off the amplitudes and finally
calculate the intensities with (37) and (40).

Let us exemplify this procedure by calculating the intensities of the two types of lines
in the diffraction pattern in the RN limit.
It follows from the formulae in the preceding section that, for p = 0,

W, (€ ) =3po[9 + 4 sin’ (%D?NC) "% exp (i (0) ) exp (icos2§),
W5 (6,0 = 200 [sin Gpdy0) |19+ dsind (3 piv) 17 (1)
x exp (io; (€) ) exp (3icos2E).

Applying Jacobi’s generating formula for the Bessel functions J, ({) of integer order
[34, p. 22], i.e.

exp (ilcos2E) = +§ J. () i" exp (2ink) ; (42)

and comparing the thus obtained explicit expressions of ¥; and W5 with their series
expansions as in (33), one gets

O (1) = 3po 19+ dsin’ G piyD) 1 7721, ().
®8" (0= 2p0 | sin (G p3y0) |19+ dsin? G pivD) 17 I (30).

Now, the closed form intensities, evaluated at the plane z = L, follow readily from
(37) and (40) :

PR I9R(v) +43% (3v) sin® (3 piyv)]

(43)

I (v) = 3 ,heZ,

9 + 4sin’ G poyv)
(44)

49373 (3v) sin’ & piyv)

,meZ, m/3e¢Z,;

Im/3 (V) = 3
9 +4sin’ (5 piyv)
where v = CL/z = ky€,L/ 2 /€. is the so-called Raman-Nath parameter or peak phase
deviation. Note that only the argument of the sine function depends on the nonli-

nearity parameter y, defined in (23).
Using the Bessel function identities [34, p. 15 & p. 30], J_,= (- 1)"J, and

B+2 3 B=1, (45)

n=1
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one can immediately check that the total intensity of the spectrum equals the intensity
p§ of the incident laser light. Furthermore, with (44) one can verify that the spectrum
is completely symmetric with respect to the zeroth order line, i.e. I., (v) = I, (v) and
L w3 (v) = Iyy3 (v). This is always the case for normal incidence of the light as will
be discussed in more detail in Part II.

II. Acousto-optic diffraction of ordinary light or weak laser light in a liquid
(linear case)

1. The modified generating function method

We have already introduced the idea of a generating function in the Sections 2
and 4 of Part I. Here, we will present a detailed study of the AO diffraction problem
in the absence of nonlinearities, i.e. when ordinary light or weak intensity laser light
is used. Emphasis will be on the modified generating function method (MGFM),
originally developed by Hereman for the theoretical investigation of AO diffraction
due to an amplitude-modulated ultrasonic wave [10], but giving full scope to its
applicability when a simple progressive ultrasonic wave is used (cf. (9)).

To incorporate Bragg diffraction as well as Raman-Nath diffraction regimes (see
Section 1 of Part I), we initially take an oblique angle of incidence ¢, as depicted in
fig. 1 (not excluding the limiting case ¢ = 0). Hence, the phase (13) of the incident
light beam must be replaced by

@ (X, z, t) = wt - k (x sing + z cos®). (46)

In the absence of nonlinear terms (X, = 0), the wave equation (15) is still the starting
point and the subsequent steps are still valid, although all the references to the third
harmonic must be dropped (y = 0, ¥; = 0). It is straightforward to show [7, 9, 25]
that the generating function ¥, (&, {) = ¥ (&, {) must be the solution of the partial
differential equation

1 i 4 1

| . .0
—ac——1(cos2€)‘If—— 3 mW - 5 asing g, 47)

where a = 2KE /€ k, together with the appropriate boundary and periodicity condi-
tions :

Y(E0-=1, (48)
V(E+n )= (E L), (49)

For simplicity we have normalized the intensity of the incident light (p, = 1) and for
notational convenience we have dropped the indices 1 and L. It is now possible to
make the following statements :



40 W. HEREMAN

(1) The AO diffraction is entirely formulated in terms of one — so far unknown —
generating function W, which turns out to be a powerful approach.
First, let us repeat that the Fourier expansion of W, i.e.

YED= I (0 exp (2ind), (50)

will generate the (complex) amplitudes y, ({) of the diffracted light waves. Further-
more, rewriting (50) in the original variables (X, z, t), the formulae (35) (however
with the deflection angle 0, replaced by 6, - @) and (36) readily follow. Hence,
deflection and Doppler shift are comprised in the present formulation of the problem.

(2) One can prove that the problem is well-posed, this means that (47) with (48) and
(49) has one and only one solution. An explicit proof of these theorems would carry
us to far (cf. however [7, 9]).

(3) The famous system of Raman-Nath equations

2%‘%‘-(wn-l-wn+|)=in(pn-2asin<p)wn, (51
for the complex amplitudes @, (neZ), satisfying the boundary conditions
yp,(0)=90, (9, denotes the Kronecker delta), is equivalent to our problem
(47) - (48) - (49). Indeed, substitution of the Fourier expansion (50) into (47)
yields (51), while the boundary conditions for g, follow from (48).

Consequently, there is a unique set of complex amplitudes satisfying the RN
equations, explicitly solving the equations is something else !

(4) As an immediate result of almost trivial transformations and the existence of a
unique solution, one can derive symmetry properties of the diffraction spectra. Let us
give an easy example. Changing € into - € into W (&, {) and denoting W (E, {) by
Y (E and ¥ (- & Q) by ¥ (§ Q), from (47) and (50) readily follows that

Y ED=- 3w, (i exp (- 2ink)

n=-oo

= 3 Dy, (D exp (2ink) (52)
satisfies
p ) ip 0°¥" . oY
T i(cos28) ¥ = _%W +%smcp F (53)

and ¥ (,0)=1, provided ¥ is the unique solution of the original problem.
Comparison of both problems, clearly reveals that for normal incidence of the light
(p=0) ¥ (E 0 =¥ (& 0 and from (50) and (52), we thus obtain

., (D) =(- D"y, (D). (54)
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Regarding the definition of the intensity of order n, i.e.

I, (D) = v, (© v, (D), (55)
we then may conclude that
L (€)= 1, () (56)

In words : for normal incidence the spectrum is symmetric with respect to the zeroth
order line (central line). For oblique incidence of the light (¢ = 0) and for arbitrary
nonzero values of p, (47) and (53) are never identical, hence, the spectrum shows
asymmetry. However for p =0 (RN limit) one can show [9] that the spectrum is
again symmetric, even for oblique incidence of light. Other symmetry properties and
the reciprocity property may be proved similarly [7, 9].

(5) Again without solving the problem explicitly, one can demonstrate that the sum
of all intensities always equals 1. Indeed, multiplying (47) by ¥*, adding the complex
conjugate equation term by term and integrating the result with respect to € over the
period 1r, yields

LYEDY* (EDdE=m, (57)

where we have taken into account (48). Substitution of (50) into (57) leads, after
explicit integration of the left hand side, to

2 0. Qe 0= 3 LO-=L1 (58)
This result should not surprise us for we assumed that there is no loss of energy in
the medium.

(6) It can not be denied that the present approach in an economizing modification
of an original GFM, established by Kuliasko, Mertens and Leroy [20, 26] and further
developed by Plancke-Schuyten er al. [29, 30, 31].

Indeed, by starting directly from Maxwell’s equations, and systematically introducing
the necessary approximations, the present approach avoids the detour along the RN
equations (51). From our point of view that infinite system is now redundant, except
when it is truncated in accordance to special cases of Bragg diffraction [7, 9, 11, 25,
28].

In the following two sections, we will deal with approximate solutions of (47)
for different values of the parameters p and . In the last section we draw special
attention to its exact solution.

2. Raman-Nath diffraction

From physical arguments (see e.g. [16, 17]), RN diffraction is only possible for
small AO interaction lengths L (thin phase grating approximation). Mathematically
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speaking, the condition p < 1 essentially defines the RN regime, provided the RN
parameter v is kept sufficiently small as well. Quite often, after Klein and Cook [15],
the criterion Q = pv=K’L/k < 1 is used. Today there is a big controversy about the
validity of this classical criterion [7, 32], but a profound discussion of that would
deviate us too far from our subject.

In the RN limit p = 0, intensities of the squared Bessel function form may be
obtained. Indeed, the m-periodic solution of (47), satisfying the boundary condition
(48), reads

YE D= exp% [ sin (bY) cos (2E - bY)]

- S i"exp (2inE) exp (- inb) J, (S10E ) (59)

with b = (a sing) / 2. The diffraction intensities, evaluated in the plane z = L, are then
given by
2sin (Elav sing)

L (v)=J2( ). (60)

a sing
Remark that the first order diffraction intensity is largest when ¢ = 0, i.e. at normal
incidence of the light. The formula (60) for ¢ = 0 reduces to

I, (v) = J% (v), (61)

a classical result, first obtained by Raman and Nagendra Nath with a geometric optics
theory (see e.g. [24]). The formula (61) follows from (44) by simply putting y = 0.
Theoretically, all the light would be diffracted when I, (v) =J; (v) =0, i.e. for
v =2.4 (the first zero of the zeroth-order Bessel function).
Also remark that with the aid of (45), the total intensity of the spectra corresponding
to (60) or (61) is easily proved to equal the initial (normalized) intensity.
For p <1, i.e. in the RN regime, correction terms to either (60) or (61) may
be calculated by using a perturbation expansion approach. On substituting the series
expansion

YE = J Gp)e.(E D, (62)
n=0
into (47) and equating equal orders of p, one finds the following perturbation scheme
oD, . 1 0P, _,
a—c—l(cos2f§) q)n__ g (I’Bno)—agT, nelN, (63)
for the unknown 7r-periodic functions @, (&, {), subject to the boundary conditions
@, (&, 0) =9,

Solving for @, ®, and ®,, inserting these into (62) and expanding into Fourier
series, we finally obtain [9]
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0 =1, @ + 28 @, + S

- TQA;% {[n?(200% +7) - 9T J, + 30 (1202 - DI}, (64)

where J! = dJ/dC. The intensity in z = L, is then calculated from (55), up to terms
s 2
mp:

PV [ (7n2-9v3) Pw)+v(6n2-3)J, (v) I (v) - 5vI2 (W) ].

(W= -
720 (65)

Some comments on the validity of this result may be found elsewhere [9, 20, 24].
For p> 1, we will consider two different cases. The first, corresponding to
normal incidence, will result in a symmetric spectrum with respect to the central line
and only two sidelines with significant intensity. Here again, the interaction length L
must be kept small, so that Q = pv< 1.
According to Klein-Cook’s criterion, this spectrum is of the RN type. In order to
calculate the intensities of this particular spectrum, we introduce the new variable
0 = pC (remark that Q = OL/z). Hence (47) can be written as

006 p R Y
where © (E, 0 0)) =W (¢, () is subject to the conditions ® (£, 0)=1 and
O E+m0)=0( 0). For p> 1, obviously we try to find a solution of the form

(66)

O 0)- 3 ()0, (0. (67)
n=0
Substitution of this expansion into (66) and equating equal orders in 1/p, yields
00, 1. 0°0, B
ae + § 1 agZ - (l - 6110) (COSZ&) ®n— 1¢ (68)

From (48) and (49) follows that ©,(&, 6) (n=0, 1, 2..) must be m-periodic
functions in € satisfying @, (€, 0) = d,,. Subsequently calculating ®,, ®, and 0,,
substituting these into (67) and expanding the resulting function into its Fourier
series, the expressions of the amplitudes y,, p., and ., follow (up to orders in
1/p?). Calculation of the intensities through (55), finally gives (for z=L)

8 ., 1
L(M=1- o sin’ 7P

4  , 1
LW-1.M= = sin’ —-pv, (69)

I, (v)=L(v)= 0, forn=2.



44 W. HEREMAN

These compact expressions were formerly obtained by Mertens [23] as the result of
a direct calculation (up to the second order) and by Mertens and Kuliasko [26] after
derivation of the exact solution of the problem (47) - (48) - (49) in terms of
Mathieu functions (see later Section 4) and subsequent approximations. Once again,
remark that the sum of the intensities in (69), although neglecting corrections terms
in 1/p°, 1/p*, etc., exactly equals 1.

3. Bragg diffraction

In the second case, which is far more interesting for applications, the light enters
the medium at a specific angle ¢gz. That angle satisfies the expression

K A A p (70)

SPpr = Por = 31"~ 74 ~ 2V~ 2a°

which is easily obtained from the conservation of momentum for the light and sound
wave vectors [ 16, 17]. In anology to diffraction of X-rays in crystals the angle @z
is referred to as the Bragg angle.

For < 1 GHz one may replace singgg by @y (as in (70) ) and accordingly put
cosggg = 1. More generally, one can define a Bragg angle of order n (n integer) by

. (m DA n
sinpgp’ = A 2—2, (71D)

for which obviously the right hand side of (51) vanishes. Note that for first order
Bragg incidence (@gr’ = @gg), from (35) however with 6, replaced by 6, - @gg, We
obtain

0, =- Qg (72)

This means that the angle between the incident and diffracted first order beam is 2@gg.
Therefore, light is reflected by the sound wave fronts [24] and practically only one
order is significantly diffracted (see fig. 2a). Many authors take this argument as the
definition of the Bragg diffraction regime. Physical arguments [ 16, 17] indicate that
Bragg diffraction is only possible if the AO interaction length L is greater than a
certain minimum (thick phase grating approximation). In Klein-Cook’s terminology
Bragg diffraction occurs for Q> 1.
For exact first order Bragg incidence, ¢ = @y, (47) becomes

oY . 1. Y p oY
—a—c-—l(cos2ﬁ)‘l’—-?1p6€2——76—g,

Again applying a perturbation method, with an expansion of type (67) in 1/p (Q > 1
implies p > 1), readily leads [9] to easy formulae for the output light intensities (in
the plane z=1) :

(73)
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1 | .5 1
L(v)=1- T V- o s1n27pv,

l
—pVv,

|
I,(v)= ra sin’ 5

(74)
L=V,

I,(v)=1_,(v)=0, forn= 2.

These expressions, valid up to orders in 1/p? serve as a good example of an
asymmetric spectrum. For p > 1 and v sufficiently small, the formulae simplify further
to

V2,

L(Wv=1-

A —

(75)
Li=3V,

all the other intensities being negligible.
The simple expressions (75) are in good agreement with Phariseau’s formulae [28],

I, (v) = cos? ¥,
(76)

L,V
L, (v) =sin’ 7,

obtained from the direct integration of a pair of RN equations.

It is sometimes of interest to consider oblique incidence according to higher
order Bragg angles, defined in (71), or to take into account small deviations from
Bragg angle incidence. Space is lacking here to discuss the various cases explicitly [ 7,
9, 11]. Instead, I, (v) and 1_, (v) have been tabulated, in Table 1, for a number of
cases of ideal Bragg and near Bragg incidence. Note that [,=1-1, - [_, and that
introducing the parameter

6= - 2a :mcp, (77)

helps in distinguishing the various cases. For example, = - n corresponds to Bragg
angle incidence of order n (¢ = @S2, as defined in (71) ). Furthermore, the parameter
B will play an important role in the exact integration of the problem as we will discuss

now.
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Table I Intensities of order & 1 in the case p> 1.

Case -8 I,(v) I-y(v)
$.2 CTG T,
normal incidence 0 ______451220v/4 —-—-2—————4512 pv/4
v =0
Bragg angle of even order |2k 4sin?(1+2k) pv/4 4sin?(1-2k)pv/4
_ (2K) ke€Z\ {0} (1+2k) Zp? (1-2k) Zp?
$ = Yur
Bragg angle of odd order |2k+1, k€Z )
_ (2K KA0,-1 sin?(1+k)pv/2 sin?kpv/2
Y = Ypr * +k) 4p? P!
= @
_ L;) k=0 s1nppv/2 v2/4
- in? 2
o = “’:m” K = -1 v2/4 smopv/
Neighbourhood of Bragg 2k+8,, 4sin? (1+2k+8,) S 201 .
1)ov/4|4sin?(1-2k-B8,)pv/4
angle o(f2 f;/en order lélee iZO i (T+2K+8,) 2p? T1-2K-8,;) 2p2
¢ =¥
Neighbourhood of Bragg |Zk1B1s  lasin? (2+42keg ) pv/4|4sin? (2k+8,)pv/4
e ritis 8,€10, 1 (2+2k+*B) 202 (Zk+8,)202
¢ = ?
BR

4. Exact solution of the problem

In this concluding section we will outline how the equation (47), together with
(48) and (49), can be solved exactly. A discussion of all the details of this
complicated construction is not appropriate for this review, we rather refer to earlier
work [7, 9, 24, 25, 26, 29].

Examining (47) we may try to separate the variables by substituting

YEO=Y®Z®D, (78)
yielding

dz 1.

—a—c— = —Z-I(XZ, (79)

d*Y . dY 40 8

ng + 2lﬁ —df + ( F = FCOS2E) Y= O, (80)
where ia is the separation constant. The general solution of (79) reads

Z ()= C exp (3 ial), 81)

while (80) can be transformed into the canonical form of the well-known Mathieu
equation [2, 21, 22] :
2

y ;
aF +(a'- 2q cos2E) y=0,

(82)
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where
y (&) =Y (&) exp (iB), (83)
and with
' iq 2 - i
a 5 +p°, q o (84)

With regard to the periodicity condition (49) and the transformation (83), we must
show that there exist solutions of (82) satisfying the condition

y(E+m) =y (E) exp (ipm). (85)

The values of B, being coupled with the angle of incidence ¢ by its definition (77),
will indeed be of paramount importance for the construction of such solutions y (&).

Taking into consideration Floquet’s theory [2] it may be shown [9] that the only
solutions of physical importance are those summarized in Table 2. For a better
comparison with the extensive literature on the Mathieu equation, we wrote argument
x instead of €. The functions ce, (x ; q) and se, (X ; q) represent the Mathieu cosine
and sine of order n (n € N), corresponding to the characteristic values of a’ = a, and
a'=b,, respectively. The functions ce,s (x;q), se,5 (X5q), ce, .4 (x;9) and
se, - p, (X ; @) are Mathieu functions of fractional order (nelN, 0 <, < 1), where
the corresponding characteristic numbers a’=a, 5, a’=a, ,_g have to be chosen in
stable domains of the stability chart for Mathieu functions [2, p. 123 ; 21, p. 40-41,
p. 98].

Table II. Solutions of the Mathieu equation (82) with parameters (84) for different values of f.

Value of B Condition Solution Characteristic number a'
= o iBym Sy S . : %
B Zk‘B] f(x+m) = f(x)e meZn,al(x,q) -LeZn’81(x,q) +x5e2n'81(x.q) aZn(aZn,B1 <b2n+1
keZ or or
0<By< "*—(2nu,1-s‘)("“”=“ezn+1,1-s1(";q* i5"'2|1+1,1—e1(";q) Bne1 P2ne1,1-8, “bonez
ne€N n€N
- - igym .q) = . i .
B=2kvlepy | flxem) ==f(x)e™0 | me_ (o, 1) (XiQ) = 0eq g (iQ) - dseyn g g (xia) 320 32n,1-8, “ P2ne
ke or or
0<By<1 ™2ne1,8, (KA = Cgneq g (X5Q) *iseypyg g (X3Q) %ne1 “2ane1,8, “P2ne2
n€N n€N
8 =2k, f(x+n) = f(x) cezn(x;q) or sezH‘z(x;q) n€N a5, or b2n¢2
k € 20 n €N
B=2k+1, f(x+m) = -f(x) ceznﬂ(x;q) or SeZnﬂ(X;q) n€N 304 or bZnH
kez n€N

(Bragg cases)

B =0 f(x+n) = f(x) ceZn(x;q) neEN an n €N

(normal f(x) = £(-x)
incidence)
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As an example let us construct the solution in the case f = 2k + ,. The equation
(47) is linear, hence, the sum of all particular solutions is still a solution of it. Using
(78), (81) and (83), together with the solution as listed in the first row of Table 2,
we obtain

8

Y(EO= T {Cypexp (% i0ty,5,0) mey, 5 (€5 Q)

n=0
l.
+ C2n+ 1,1-B1 eXp (E 100, + l,l—ﬁ1C) me-(2n+ 1;1-8) (E 5 q) }
exp [-i(2k+B,) &, (86)

where according to (84)

aZn,ﬁl = {42 [aZn,Bl - (2k+ [-))1)2 ],

(87)
Oons1,1-8, = % [a, ;- g~ (2k+ 51)2 I,
Applying the boundary condition (48), then requires
1= 3 exp[-i(2k+B,) E] {CZn.ﬁl me,, 5 (€5 q)
n=0
+ Cops 1,1 - M€ 04 11-89 (E3 D) } (88)

Next, taking into account the Fourier expansions [21, p. 79 ; 22, p. 111-116], i.e.

+ oo

me,, g (€5 q) = r=Z_WA?,"'E“ (q) exp [i (2r + B,)El, (89)

me._ n+1,1- 6y E;a= 2 Af'}z*rl;’l; b (q) exp [i(2r+B)) El:

r=-

considering the coefficients C,,5 and C,,, ;.4 as complex quantities, using the
orthogonality relations between Mathieu functions of fractional order (put B, = v/w)
[21, p. 24/82], we find that the coefficients in (86) are all real, and given by

C2n,ﬁ, = Aﬁl'ﬁl (9),
Consrn- B Agr};klilﬁ B (q). (90)

Substituting those constants into (86), and once again using the expansion (89), it
is straightforward to obtain the amplitudes g, ({) from which the n-th order intensity
readily follows. In z = L we thus obtain
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+ o0
— 2r,B1 A 21,81 25,81 A 25,8

In (v)= 5,10 -4 Z A A (n+k) Ay AZ(nl+ K-

r,s=0

r<s

.o 1
sin’ 16 (ayp, = Ap) PV

S A2LI-Br A2r+11-By B+ 11-B1 A2+ 11-P
-4 Z A-(2k+l) A-(2n+2k+l) A-(2k+l) A-(2n+2k+1)'
r,s=0
r<s

.2 1
sin T (A4 11-p, = 2 11-p) PV

+ oo
21,61 21,81 2s+1,1-PB 25+ 1,1-P
=4 Z A2k A2(n+k) A-(2k+l) l A-(2n+2k+]1)'
s=0

oD

L2 1
Sin 16 (a2r,ﬁ1 - a28+ 1,1 - ﬁl) pV

Similar expressions may be obtained for the other cases (see also [7, 9, 24, 25, 26,
29]).
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SAMENVATTING

Dit beknopt overzicht van ons recent onderzoekswerk [9] bestaat uit twee
duidelijk te onderscheiden delen. '

In het eerste deel behandelen we de diffractie van intens laserlicht door een
voortlopende ultrageluidsgolf in een isotrope middenstof (een vloeistof bijvoorbeeld).
Dit vraagstuk is niet-lineair, vermits er in de golfvergelijking kubische termen
voorkomen die verwijzen naar het elektrisch veld. Dit type niet-lineariteit geeft
aanleiding tot de creatie van de derde harmoniek voor het licht in het midden. In het
diffractiepatroon zelf veruitwendigt zich dit door de aanwezigheid van intermediaire
lijnen, die liggen tussen de gewone diffractielijnen, die men op dezelfde plaats aantreft
als bij de diffractie van gewoon licht.

Onze theoretische studie van dit vraagstuk steunt op een verzoenbare combinatie
van Bloembergen’s theorie voor de voortbrenging van de derde harmoniek van licht
[1, 3, 27] en de theorie van Raman en Nagendra Nath voor de behandeling van
akoesto-optische diffractie (zie o.a. [7, 9, 24]).

Na het aanbrengen van de basisprincipes, waarbij we speciale aandacht schenken
aan het verschil tussen Raman-Nath diffractie en Bragg diffractie en het begrip
isotroop midden, leiden we de basisvergelijking af voor akoesto-optische diffractie
(inclusief de generatie van de derde harmoniek). Deze vergelijkingen lossen we exact
op in de Raman-Nath limiet, corresponderend met diffractie van licht door een
intense ultrasone golf van voldoende lange golflengte. Tenslotte bespreken we het
diffractiepatroon algemeen en berekenen we de intensiteiten expliciet voor de
Raman-Nath limiet.

In het tweede deel bestuderen we theoretisch de akoesto-optische diffractie van
gewoon licht of voldoende zwak laserlicht door een voortlopende ultrasone golf
in een vloeistof. Hierbij is de generatie van de derde harmoniek uitgesloten, zodat
het probleem lineair is. Bijzondere aandacht gaat naar de gewijzigde voort-
brengende-functiemethode, die leidt tot een elegante en alternatieve formulering van
het probleem en die tevens toelaat het vraagstuk benaderd of exact op te lossen
zonder expliciet gebruik te moeten maken van de Raman-Nath vergelijkingen.

In een eerste paragraaf zetten we de methode zelf uiteen en wijzen hierbij op de
wiskundige trefkracht van deze aanpak (b.v. voor de a priori kennis van symme-
trieéigenschappen van het spectra). Nadien berekenen we de intensiteiten van spectra
in het Raman-Nath en Bragg diffractie regime. Tenslotte tonen we hoe het vraagstuk
exact kan worden opgelost door gebruik te maken van de Floquet theorie voor de
differentiaalvergelijking van Mathieu. Als voorbeeld berekenen we de intensiteiten van
het spectrum dat bekomen wordt bij schuine inval van het licht onder een invalshoek
die nauwelijks afwijkt van een hogere orde Bragg hoek van het even type.
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