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Abstract

We report on an investigation of Lic point symmetries of two systems of nonlincar PDEs,
both representing classical field theories. The program SYMMGRP.MAX is used to compute
the determining cquations, which amount to scveral hundreds. With the usc of relativistic
notation, these arc completely solved and therefore the coefficients of the vector field are
obtained in closed form. Qur investigation confirms that the symmetries previously reported in
the literature are correct and also complete.

Introduction

We present results of an investigation of Lie point symmetrics of two systems of
nonlincar PDEs, both arising in the context of classical field theories. The first systcm describes
an clectromagnetic field coupled with a complex scalar field. - The second system models an
clectromagnetic field coupled with a two-dimensional complex spinor.

We usc relativistic notation throughout, except that summations over repeated indices are
not implicit. Let x* (p = 1, 2, 3, 4) denote the usual real space-ime coordinates, with =t
Indices are raised and lowered with the help of the Minkowski metric (-1, -1, -1, +1).
Summations over greek indices range from 1 to 4. Furthermore let A” denote four real functions,
and let ¢, y, and vy, denote three complex functions of the x*. The real constants e, A, and M
are such thate # 0, A, >0 and M 2 0. We use o for a set of four 2 x 2 hermitian matrices,
so that ¢* is the identity and o', 67 and o’ arc the Pauli matrices. Also y denotes a two-
componcnt object with components y, and y,. A star stands for complex conjugation, and a
dagger for hermitian conjugation.

Field Equations
In the above notations, the first set of equations we will investigate can be wntten as
Y 9, {0var -0 ar) < ie (9070 - 070" 0} + 220704 = 0,
n
(1
Y (9, +ieA} {0+ iear} ¢+ Mo + A (007) 0 = 0.
N
This is a system of six nonlinear partial differential equations for the six dependent variables A*
(u=1,2, 3, 4), Re(d) and Im(¢). There are, of course, four independent variables x* (u = 1,
2, 3, 4). The second set of equations we will consider

Y o, {0rA" - At} -ey'oy =0, ¥ o' (0, +ieA )y =0, %))
n B

consists of eight equations for cight dependent variables A*, Re(y,), Im(y,), Re(y,) and Im(y,).

In ficld-thcoretical language, A* usually represents the electromagnetic potential, ¢ is a
scalar field of mass M, and v is a two-dimensional (massless) spinor. More about the physical
significance of these variables can be found in Ref. [1].
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Determining Equations
We first concentrate on Egs. (1), the coupled electromagnetic and scalar fields. We look
for the Lic point transformations involving the independent and dependent variables which will
leave the solution set of (1) invariant. Locally, such transformations are generated by a vector
field of the form [2]
) ad d
o = HY + (o + (og , 3)
AR YR AP

where H*, ®* and ®" are functions of x", A* and ¢°, and where ¢* = Re(¢) and ¢° = Im(¢). The
vector field o must be such that its second prolongation, acting on Egs. (1), vanishes on the
solution sct of (1). This requirement yields the so-called determining equations for the
coefficients H*, @ and ®*. Knowledge of the closed form of these coefficients then allows to
find the Lic point transformations upon integration of a system of first order equations.
Dctermining equations can be obtained entirely algorithmically. A number of symbolic
packages exist to find them. We have used the Macsyma program SYMMGRP.MAX [3].
Running the program and climinating simple dependencies, we find that
HY = H*(x*), @ = O (x}AY), @ = @ (2} A", ¢) . @)

The program then yiclded 210 (not all independent) determining equations for the coefficients
of the vector field. It tums out that the overdetermined system can be simplified remarkably by
writing it in relatvistic notation.  After climination of some redundant equations and minor
rearrangements, we find that the determining equations are as follows:

i(y__=0: W=0; (T_W=O; (5a)
JA%0A* 0A¥ 9°9¢°
OO IH o 9 Ly, OHY_OHT 3% o . g,
JA, dx, JdA, Ox, ox*  dx" JA* 0AY
o R PHY A#up
- + =0, . Sc
dA,0x, aA@xu axlax" V#Eu )
24¢ 2L 2 v R
ror | O JY  IH =0, KA MV o# (5d)

Ix"0A~ Ox A~ Jx*OA ™ dx"9x*

2hHv 2 2 2 2
Fv IO FHY _ IH* _ FH* 0, KAy E: (5e)
dxJA*  JxJA"  Jxdx" axdx*  dxox
1 b 4 4
oot g0 yfoo )
a¢h aq’a aAl axl
b 4 4 1
(Da - q)b _aﬁ — ¢a :_)qi + Q‘, a¢ + aH _ 2 aH ) a# b : (Sg)
00" o9° JdA* ox* dx!
gecAr | 0¥ L 0¥ |, F® e FHY 0 L (5h)
¢ a0’ 2¢° axpa¢” x o dxox*
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[ e P ]+2e(¢sa® —¢°.ai’]+4em,{¢°¢°+¢’¢’}

ox,dx*  odx*ox* ox* ox* (sj)

2 oD oH'*
20 {(0*) v ()| @ -3 At +24 =0;
Ao (o) 0, - % 4 a]

+ Eb I4
ax*

a¢)

il M‘_ai’ifwhw
ax*
q)a WJ_2¢G[¢’®S*¢6®6]J

(ol e e i)

Y
iy dx,0x

2 a9 o
<A [ [{0*) + (o) [4»" cor S -
{[ ] d¢° 99’
, od° a0P°
+ ¢! 2¢° +@° - 1+ 20°A, D [=0, b .

e?[ [¢8‘ 3¢¢ 8¢°¢} A, J a#

Here x, A, pand v run from 1 to 4; a, b and ¢ run from Sto 6; and & = | = - g,

(5k)

Solution and Lie Point Symmetries
To solve the determining equations (5a) - (5k) requires work of some length, so we only
oudine the main steps. One can show that, owing to (4), the most general solution of (5a) and
(5b) is
D =T LAY SRDAY - R
’ (6)

= Y g (20 go(x) g” = )« & F(xY)

bes.6 X
Here we have f*, = 0if p = v, /™ = - " and &, is the Kronecker delta. From (5¢) - (5¢), we
find

o 5, af H#EVv
F=-f+0C, = . 7)
f I c)x uEA (

In (7), C is a constant. We can eventually deduce that f*, only depends on x* and x°, and is
linear in these variables. We thus write
~P it -2,y e xm . F5 56, 20+ 26, K

= fll ,
-, (8)

f"l:cﬂ‘*zcl],_zclox =f14' f23=C7—2(:HZ¢2C15y

n

4 _ ;= 2 3 _ _ 4
=6+ 20,0 -2,y =f,, fle=0c4* 201 2clbz Lo v

9 14

and
f= oty =Wy x=2,, 3 =22 %2, F., )]
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We have written x, y, z and ¢ for x', x?, x* and x*; the ¢, stand for arbitrary constants. From (5f)
and (5g), we get
g°,=f 8°,+8°, =0 (a#b), g°(x*))=0, C=0. 10

Knowing that F = -f, the functions H* follow from (6) upon integration. We get

1 2 _ _ 2 _ 2 2
H = G e X+enx 4‘2Cux)”'2clsxz zclo’t”CJ ClY " *CT=CZ + gl eyt

R = 62+C”y+26”xy*C“yz+2CUZ)’-'2C161)J—C5,\‘—C“A’2+C7Z—C“ZZ+C9!+6“12 :
H® = c,+c, 2+2c,,x2+2¢,,y2+ ¢, 2 - 2¢ (2= x - c X2 =y~ ¢, ¥+t +c it . (11
H* = ¢ +c 1+2c xt+2c, y1+2c 2t —c 1P +cgx —c x + ¢y —c, y +c,2-¢, 2% .
Eq. (5h) is now satisfied identically. Furthermore, (51) implies that
pody=L 8 g (12)

e Ox

B
Eq. (5j) becomes an identity, and (5k) implies that M’f: 0. Summanzing, the explicit forms of
@* and ®* are
dx

=R AT A .

D= -, x9S P =ec, x9S0

where we wrote g° as -ec,,x, with X an arbitrary function of x*.

It is not difficult to show that the constants ¢, to ¢,, correspond to generators of the
Poincaré group, c,, corresponds to a uniform dilatation, c,, corresponds to a gauge transformation,
and ¢,y 10 ¢,s correspond to special conformal transformations. The system (1), therefore, is
invariant under the Poincaré group and gauge transformations when M # 0 (i.c., f then vanishes),
and under the conformal group and gauge transformations when M = 0.

This completes the analysis of the Lie point symmetries of Egs. (1). The analysis of Egs.
(2) can be carried out along similar lines. Here the program SYMMGRP.MAX, after elimination
of dependencies, yielded 200 determining equations. Much as in the previous case, they can be
written in a simplified form using relativistic notation. A complete solution has again been
obtained, which agrees with a computer-aided solution obtained independently.  Lic point
symmetrics, in the casc of Eqgs. (2), generate the conformal group with gauge transformations.

To conclude, we point out that it was well known [4] that Egs. (1) and Egs. (2) admit the
Lic point symmetrics we found. OQur analysis provides evidence that these are the only ones.
The method we used for solving the determining equations should be applicable whenever the
original equations are Lorentz invariant.
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